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We developed a new analytic proof and conducted Monte Carlo simulations to assess the effects of
methodological and statistical artifacts on the relative accuracy of intercept- and slope-based test bias
assessment. The main simulation design included 3,185,000 unique combinations of a wide range of
values for true intercept- and slope-based test bias, total sample size, proportion of minority group sample
size to total sample size, predictor (i.e., preemployment test scores) and criterion (i.e., job performance)
reliability, predictor range restriction, correlation between predictor scores and the dummy-coded
grouping variable (e.g., ethnicity), and mean difference between predictor scores across groups. Results
based on 15 billion 925 million individual samples of scores and more than 8 trillion 662 million
individual scores raise questions about the established conclusion that test bias in preemployment testing
is nonexistent and, if it exists, it only occurs regarding intercept-based differences that favor minority
group members. Because of the prominence of test fairness in the popular media, legislation, and
litigation, our results point to the need to revive test bias research in preemployment testing.
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Few topics in industrial and organizational (I/O) psychology and
human resource management have generated more media attention
than bias in preemployment testing (e.g., Abel, 2007; P. B. Brown,
2007; Marzulli, 2008). In addition, the topic of test bias receives
immense public scrutiny in the legislation and litigation arenas
(e.g., Berk, 1982; Cormier v. P.P.G. Indus., 1981; Hamer v. City
of Atlanta, 1989; Mehrens & Popham, 1992; Outtz, 2002; Reyn-
olds & Brown, 1984; United States v. City of Erie, 2005). Test
bias, also labeled predictive bias or differential prediction, occurs
when the “slope or intercepts of the regression line relating the
predictor [i.e., preemployment test] to the criterion [some measure
of subsequent success, usually job performance] are different for
one group than for another” (Society for Industrial and Organiza-
tional Psychology [SIOP], 2003, p. 32). In other words, as noted by
the Standards for Educational and Psychological Testing (Amer-
ican Educational Research Association, American Psychological
Association, and National Council on Measurement in Education
[AERA, APA, and NCME], 1999), “no bias exists if the regression
equations relating the test and the criterion are indistinguishable
for the groups in question” (p. 79). The media attention is usually

accompanied by emotionally laden polemics because the issue of
test bias is entangled in broader societal issues such as individual
liberties, civil rights, and social justice (Oswald, Saad, & Sackett,
2000; Reynolds, 1995). Although there is evidence that, as a
whole, research in I/O psychology does not address many human-
capital trends of interest to society at large (Cascio & Aguinis,
2008a), the topic of test bias is an exception given the continuous
scholarly attention it has received over a period of 4 decades (e.g.,
Cleary, 1968; Culpepper & Davenport, 2009; Van Iddekinge &
Ployhart, 2008).

Test bias is one of the issues in I/O psychology on which most
researchers agree because findings seem consistent. The consensus
in I/O psychology and related fields (e.g., education, human re-
source management) concerned with high-stakes testing is that, in
the instances when it exists, test bias is found regarding intercept
differences between groups in the form of overprediction of scores
for minority group members (i.e., smaller intercept for the ethnic
minority group compared to the majority group), but no differ-
ences are found regarding slopes across groups (e.g., Cole, 1981;
Houston & Novick, 1987; Humphreys, 1986; Hunter, Schmidt, &
Rauschenberger, 1984; Kuncel & Sackett, 2007; Linn, 1978;
Rotundo & Sackett, 1999; Rushton & Jensen, 2005; Sackett,
Schmitt, Ellingson, & Kablin, 2001; Sackett & Wilk, 1994;
Schmidt & Hunter, 1981, 1998; we provide a detailed technical
description of the issue of intercept versus slope differences in the
next section). This conclusion has been reached regarding selec-
tion tools used in both work and other organizational settings to
assess a heterogeneous set of constructs ranging from general
mental abilities (GMA; e.g., Hartigan & Wigdor, 1989) to person-
ality (e.g., Cortina, Doherty, Schmitt, Kaufman, & Smith, 1992;
Saad & Sackett, 2002) and safety suitability (Te Nijenhuis & Van
der Flier, 2004). Moreover, a similar conclusion has been reached
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regardless of which ethnic minority groups are compared to the
majority group involved in the assessment of possible test bias. For
example, results are based on studies conducted in the United
States comparing the majority (i.e., Whites) to Latinos (e.g.,
Schmidt, Pearlman, & Hunter, 1980) and African Americans (e.g.,
Bartlett, Bobko, Mosier, & Hannan, 1978; Hunter & Schmidt,
2000). Also, the same conclusion has been reached regarding
majority and minority groups classified according to socioeco-
nomic status (e.g., Canivez & Konold, 2001) and entirely different
ethnicity classifications outside of the United States. Examples
include research conducted in the Netherlands comparing groups
of Native Dutch (comparison group) with Turks, North Africans,
Surinamese, Netherlands Antilleans, and former Yugoslavs (e.g.,
Te Nijenhuis & Van der Flier, 2000, 2004); research conducted in
Israel including groups of individuals born in Israel (comparison
group) with those born in Eastern countries (i.e., mainly Middle
Eastern Arab countries and North Africa) and in Western countries
(i.e., mainly Eastern and Central Europe; Reeb, 1976); and re-
search conducted in South Africa including groups of non-Black
Africans (comparison group) and Black Africans (Rushton, Skuy,
& Bons, 2004).

The evidence about overprediction (i.e., favoring) of minority
members’ performance due to differences in intercepts and lack of
differences regarding slopes seems so consistent, particularly for
GMA testing, that a review of 85 years of human resource selec-
tion research concluded that “for predictive fairness, the usual
finding has been a lack of predictive bias for minorities and
women” (Schmidt & Hunter, 1998, p. 272). In fact, an official
publication of SIOP (2003), the Principles for the Validation and
Use of Personnel Selection Procedures, asserts that

predictive bias has been examined extensively in the cognitive ability
domain. For White–African American and White–Hispanic compari-
sons, slope differences are rarely found; while intercept differences
are not uncommon, they typically take the form of overprediction of
minority group performance. (p. 32)

Similarly, textbooks in I/O psychology (e.g., Cascio & Aguinis,
2005; Landy & Conte, 2007) also conclude that “when prediction
systems are compared, differences most frequently occur (if at all)
in intercepts” (Cascio & Aguinis, 2005, p. 192). It is thus no
exaggeration to assert that the conclusion that test bias generally
does not exist but, when it exists, it involves intercept differences
favoring minority group members and not slope differences, is an
established fact in I/O psychology and related fields concerned
with high-stakes testing.

In the present study, we raise important questions and cast doubt
about the established conclusions regarding test bias in preemploy-
ment testing and provide an alternative explanation for the con-
sistent results reported over the past 40 years of research. This is
certainly a tall order, but in our study we provide evidence to
demonstrate that, although published studies on test bias date back
to the late 1960s (e.g., Bartlett & O’Leary, 1969; Cleary, 1968),
there is insufficient evidence to infer that there is no slope-based
bias in preemployment tests. Moreover, we provide evidence in-
dicating that the finding of intercept-based differences favoring
members of the minority group could be the consequence of
methodological and statistical artifacts. Next, we provide a de-
tailed technical description of the concept of test bias and the
procedure for assessing the possible presence of test bias.

Test Bias: Definition and Assessment

Test bias, also labeled differential prediction or predictive bias
(Aguinis & Smith, 2007; Van Iddekinge & Ployhart, 2008), exists
when regression lines linking test and criterion scores differ across
relevant comparison groups (AERA, APA, and NCME, 1999;
SIOP, 2003). If there is test bias, regression lines can differ based
on intercepts, slopes, or both. As noted in the Principles for the
Validation and Use of Personnel Selection Procedures (SIOP,
2003) and Standards for Educational and Psychological Testing
(AERA, APA, and NCME, 1999), fairness is a social rather than a
psychometric concept and there are at least four different ways to
define the concept of fairness. Alternatively, test bias is a psycho-
metric issue and has been defined so clearly that it has been
adopted by the Uniform Guidelines on Employee Selection Pro-
cedures (1978) and also by the courts (e.g., Cormier v. P.P.G.
Indus., 1981; Hamer v. City of Atlanta, 1989; United States v. City
of Erie, 2005). Although distinct, fairness and bias are closely
related because “given the acceptance of the principle of individ-
ualized treatment based on individual merit, it appears unfair to
overpredict or underpredict the performance of any individual or
group of individuals” (Schmidt & Hunter, 1974, p. 1).

Formally assessing the presence of test bias is usually conducted
using Cleary’s (1968) regression model (e.g., Aguinis, 2004a;
Bartlett & O’Leary, 1969; Campbell, 1996; Darlington, 1971;
Grant & Bray, 1970; Hough, Oswald, & Ployhart, 2001; Maxwell
& Arvey, 1993; Saad & Sackett, 2002). As noted in the Standards
for Educational and Psychological Testing (AERA, APA, and
NCME, 1999),

when empirical studies of differential prediction of a criterion of
members of different subgroups are conducted, they should include
equations (or an appropriate equivalent) computed separately for each
group or treatment under consideration or an analysis in which the
group or treatment variables are entered as moderator variables.
(Standard 7.6, p. 82)

Similarly, as noted in the Principles for the Validation and Use of
Personnel Selection Procedures (SIOP, 2003), “testing for predictive
bias involves using moderated multiple regression, where the criterion
measure is regressed on the predictor score, subgroup membership,
and an interaction term between the two. Slope and/or intercept
differences between subgroups indicate predictive bias” (p. 32). Thus,
the procedure for assessing possible test bias includes computing a
series of regression equations regressing a criterion Y (i.e., typically a
measure of job performance) on a predictor X (i.e., preemployment
test scores); a second predictor, also labeled a moderator G (i.e.,
dummy coded variable when ethnicity includes two categories, but in
general the number of dummy vectors is k – 1, where k is the number
of groups; Aguinis, 2004a, Chapter 8); and a third predictor that is the
product of X by G (i.e., product term carrying information about the
interactive effect of X and G on Y). The following models are obtained
and then compared per the procedure described next (Cascio &
Aguinis, 2005; Lautenschlager & Mendoza, 1986; Rotundo & Sack-
ett, 1999; Saad & Sackett, 2002):

Y � b0 � b1X � e (1)

Y � b0 � b1X � b2G � b3XG � e (2)

Y � b0 � b1X � b2G � e, (3)
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where b0 is the intercept; b1, b2, and b3 are unstandardized regres-
sion coefficients; and e is a random error term. The first step
involves comparing Equation 1 versus Equation 2 to test the null
hypothesis that the increase in proportion of variance explained in
Y by adding predictors G and XG is not different from zero. If this
omnibus null hypothesis is rejected, there is evidence of test bias.
At this point we know there is test bias but do not know whether
test bias is due to differences between intercepts (G), slopes (XG),
or both. To formally assess whether there are slope-based differ-
ences across the groups, we compare the R2 (i.e., proportion of
variance explained in Y) resulting from Equation 3 versus the R2

resulting from Equation 2 (i.e., H0: ��slope
2 � 0). We use the

symbol �Rslope
2 to refer to the sample-based difference between

R2s. To formally assess whether there are intercept-based differ-
ences, we compare the R2 resulting from Equation (3) versus the
R2 resulting from Equation 1 (i.e., H0: ��intercept

2 � 0). We use the
symbol �Rintercept

2 to refer to the sample-based difference between
R2s. In practice, if the null hypothesis ��slope

2 � 0 is rejected,
then one reaches the conclusion that test bias exists and there may
not be a need to proceed with testing the null hypothesis
��intercept

2 � 0 (unless one is interested in knowing whether overall
bias is not only caused by slope differences but also by intercept
differences). In our study, we are interested in the relative accuracy of
the tests of each of these two null hypotheses, so we will assess the
accuracy of conclusions regarding H0: ��intercept

2 � 0 regardless of
conclusions regarding H0: ��slope

2 � 0.

Present Study

The established conclusion based on 40 years of research is that
test bias is not found regarding slopes. When test bias is found, it
is about differences in intercepts, but not in slopes, across groups.
Moreover, in most cases, the direction of the intercept difference is
such that minority group scores are overpredicted (i.e., larger
intercept for the majority group). However, test bias also exists
when the prediction of criteria is different across groups such that
the minority group benefits from overprediction; lawsuits regard-
ing reverse discrimination such as the Ricci v. DeStefano (2009)
U.S. Supreme Court case are based precisely on this logic because
both majority and minority applicants are protected under Title VII
of the Civil Rights Act of 1964. In this study, we raise questions
and cast doubt on these established conclusions about test bias in
preemployment testing based on methodological and substantive
reasons.

Reasons Why Slope-Based Differences Are Likely to
Exist but Are Not Found

From a methodological perspective, research based on analytic
developments, Monte Carlo simulations, and literature reviews has
revealed that conclusions regarding the absence of slope differ-
ences across groups may not be warranted. That is, statistical
power (i.e., the probability of detecting a slope-based difference
across groups in the sample when it exists in the population) is
typically insufficient. In practical terms, low power affects test
bias assessment in that, if true differences exist, one may conclude
incorrectly that a selection procedure predicts outcomes equally
well for various groups—that is, that there are no slope differ-
ences. However, this sample-based conclusion may be incorrect. In

fact, the selection procedure actually may predict outcomes dif-
ferentially across subgroups. Such differential prediction may not
be detected, however, because of the low statistical power inherent
in test validation research (Schmidt & Hunter, 1981). Monte Carlo
simulations (e.g., Aguinis & Stone-Romero, 1997) and compre-
hensive literature reviews (e.g., Aguinis, Beaty, Boik, & Pierce,
2005) conducted over the past decade lead to the conclusion that,
unfortunately, much of the research accumulated over the past 40
years has attempted to test the null hypothesis of no differential
prediction on the basis of studies too weak to detect possible
differences (Katzell & Dyer, 1977). This body of research suggests
that, even when slope-based test bias may be quite large in the
population, the size of the sample-based observed effects is smaller
due to the presence of statistical and methodological artifacts such
as measurement error and range restriction (Aguinis et al., 2005).
Thus, the concern is not only with statistical power and null
hypothesis significance testing in general but also with the size of
the observed slope-based test bias in relationship to its population
counterpart.

An important culprit for low statistical power is that most
validation research studies are conducted using small samples
(Aguinis, 1995, 2004a). For example, Lent, Auerbach, and Levin
(1971) reviewed 406 validity studies published in Personnel Psy-
chology between 1954 and 1969 and found that the median sample
size was 68. Monahan and Muchinsky (1983) reviewed articles in
the human resource selection domain published in Personnel Psy-
chology between 1950 and 1979 and found that the mean sample
size for nine occupational groups ranged from 58 to 125, and the
mean sample size for all occupational groups was 88. Salgado
(1998) reported that the median sample size for 86 criterion-related
validity studies published in the Journal of Applied Psychology,
the Journal of Occupational and Organizational Psychology, and
Personnel Psychology between 1983 and 1994 was 113. Russell et
al. (1994) reported a median sample size of 103 for all validation
studies of human resource selection systems published between
1964 and 1992 in the Journal of Applied Psychology and Person-
nel Psychology. Thus, sample sizes used in the vast majority of
peer-reviewed human resource selection research are not suffi-
ciently large to detect slope-based test bias (cf. Aguinis et al.,
2005; Aguinis & Stone-Romero, 1997). Note that these are sample
sizes in validation research in general, and not specifically in the
subsumed area of test bias. Thus, our simulation study includes
sample sizes that are as much as 10 times larger than these values.

Insufficient statistical power results from the use of small sam-
ples but is also due to the interactive effects of various statistical
and methodological artifacts such as range restriction and unequal
number of individuals across subgroups (Aguinis & Stone-
Romero, 1997). Therefore, even differential prediction studies
including very large samples may suffer from insufficient statisti-
cal power to detect slope-based differences (Aguinis et al., 2005).
For example, unequal samples sizes across groups has an impor-
tant detrimental effect on power because the effective total sample
size for two independent-sample tests is the harmonic mean of the
two subgroup sample sizes (Hsu, 1993). Also, measurement error
(Busemeyer & Jones, 1983; Dunlap & Kemery, 1988; Evans,
1985) and range restriction in test scores (Aguinis & Stone-
Romero, 1997) have important detrimental effects on statistical
power. Most, if not all, differential prediction studies include more
members of the majority than the minority group, restricted test

650 AGUINIS, CULPEPPER, AND PIERCE



scores due to selection, and less than perfectly reliable measures
for the predictor and criterion scores. Thus, although there may be
an assumption that an unusually large sample size guarantees
sufficient statistical power, this may not be the case.

As an example, consider a study by Rotundo and Sackett (1999).
These authors conducted differential prediction analyses of data
collected by the U.S. Employment Service during the years 1972–
1987 with the goal of gathering concurrent validity evidence for
the General Aptitude Test Battery as a predictor of supervisory
ratings of performance. Rotundo and Sackett did not find evidence
of slope-based test bias and stated that

the sample size used in the present study was double the largest tabled
value in the Stone-Romero and Anderson article, and the predictor
reliabilities were in the .80 to .90 range. . . . We suspect that the power
to detect a small effect size in the present study would be reasonably
high. (p. 821)

Using information from their article, we were able to compute the
statistical power of the Rotundo and Sackett analysis with the
Aguinis, Boik, and Pierce (2001) analytically derived power ap-
proximation (equations used in calculating statistical power are
included in Appendix A and the computer program is available at
http://mypage.iu.edu/�haguinis/). In terms of input data for the
power calculation, in the first analysis sample size was 17,020 for
Whites and 1,212 for African Americans. We used the observed
validity coefficients (.15 for Whites and .10 for African Ameri-
cans), observed standard deviations for predictor scores (.94 for
Whites and .83 for African Americans), and observed standard
deviations for criterion scores (0.99 for Whites and 1.02 for
African Americans). Test score reliability was not reported pre-
cisely, but we set it to .90 for both groups given that Rotundo and
Sackett stated that “predictor reliabilities were in the .80 to .90
range” (p. 821). Reliability of criterion scores was not reported, but
we set it to .52 for both groups given that this was a six-item
measure of supervisory ratings (cf. Viswesvaran, Ones, &
Schmidt, 1996). Range restriction was not reported, but we set it to
.50 given that selection ratios of .50 or .60 seem to be normative
for GMA tests (cf. Hunter & Hunter, 1984). The resulting statis-
tical power was .101, which is much lower than the frequently
used .80 benchmark (J. Cohen, 1988). In the second large sample
size differential prediction analysis conducted by Rotundo and
Sackett, input data included sample sizes of 17,020 for Whites and
6,296 for African Americans, observed validity coefficients (.15
for Whites and .14 for African Americans), observed standard
deviations for predictor scores (.94 for Whites and .85 for African
Americans), and observed standard deviations for criterion scores
(.99 for Whites and .98 for African Americans). As in the first
power analysis, we used .90 for predictor score reliabilities, .52 for
criterion score reliabilities, and .50 for range restriction for both
groups. The resulting statistical power was only .051, which means
that the likelihood of detecting existing slope-based bias was only
5.1%.

Statistical power would increase to what is usually considered
the acceptable level of .80 if some of the design and measurement
characteristics are improved. For example, in the first analysis,
increasing the sample size in the African American subgroup from
1,212 to 32,000, increasing the sample size in the Whites group
from 17,020 to 90,000, and improving reliability in the criterion
for both subgroups from .52 to .90 would yield a statistical power

value of .80. In the second analysis, because the difference be-
tween subgroups is very small (i.e., difference in validity coeffi-
cients of only .01), even extreme improvements in terms of sub-
group sample sizes and reliability would not lead to sufficient
statistical power to detect slope-based test bias. For example,
increasing the sample size of the African American subgroup from
6,296 to 50,000, increasing the sample size of the White subgroup
from 17,020 to 120,000, and improving criterion score reliabilities
to .90 in both groups would yield a power value that is still lower
than .10.

We used the observed correlations and standard deviations to
compute the targeted test bias size in each of the two aforemen-
tioned power analyses because these are meaningful targeted effect
sizes. In the first analysis, the difference between validity coeffi-
cients is .05, and in the second analysis the difference is only .01.
Because effect size is one of the major determinants of statistical
power, this difference explains in part why power is larger for the
first analysis compared to the second one and also why improving
design and measurement characteristics would have a substantial
impact on the power in the first analysis only. Nevertheless, our
ability to detect slope-based differences that are seemingly small
can be meaningful in the context of human resource selection,
particularly in situations involving thousands of people (Cortina &
Landis, 2009). Specifically, Aguinis and Smith (2007, 2009) dem-
onstrated that the percentage of false negatives and false positives
due to using a common regression line in the presence of test bias
(i.e., “bias-based false positives and false negatives”) is very large
in many cases even if test bias is perceived to be small. As noted
by Sackett, De Corte, and Lievens (2009),

the Aguinis and Smith [2007] approach distinguishes between pre-
diction errors due to imperfect validity and error made due to treating
biased test as if it were unbiased (e.g., using a common regression line
when, in fact, the regression lines for the groups under consideration
differ). (p. 468)

In the specific case of the Rotundo and Sackett (1999; Tables 2–3)
data, we used the Aguinis and Smith (2007) online calculator,
which is available at http://mypage.iu.edu/�haguinis/, to under-
stand whether or not the effect sizes we targeted in our power
analysis were sufficiently meaningful to be detected. Again, for the
first analysis, the difference in correlations between groups was
only .05, which would in most contexts be considered small
(Cortina & Landis, 2009). We used a desired selection cutoff score
of 0 for the criterion given that the mean performance rating score
(in standardized metric) is .03 for African Americans and .09 for
Whites. Results indicate that if a common regression line was used
instead of separate lines for each group, there would be 20.6% of
false negatives in the African American subgroup and 1.42% of
false positives in the White subgroup. In other words, given the
size of the samples in the Rotundo and Sackett study, about 250
African Americans (out of a total of 1,212) would be denied
employment incorrectly and about 242 (out of a total of 17,020)
White applicants would be offered employment incorrectly. For
the second analysis, for which there is a difference of only .01 in
validity coefficients across groups, we also used a desired selection
cutoff of 0 for the criterion as input in the Aguinis and Smith
(2007) calculator. Errors due to using a common regression line
instead of the subgroup-based regression lines would lead to
18.02% of false positives for the African American group and
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14.4% of false negatives for the White group. Given the sample
sizes, about 1,134 African Americans (out of a total of 6,296)
would be incorrectly offered employment and about 2,451 Whites
(out of a total of 17,020) would be rejected incorrectly. These are
large numbers and these incorrect decisions, in spite of being based
on effect sizes perceived to be small, are practically meaningful for
the individuals and organizations involved. From an ethical stand-
point, it may be argued that even if one individual is denied an
opportunity unfairly or given an opportunity unfairly, this is one
too many. The problem is obviously magnified when thousands of
individuals are misclassified if a common regression line is used in
selection decisions in the presence of test bias (cf. Aguinis &
Smith, 2007, 2009).

In addition to methodological reasons, we also expect to find
slope-based test bias for several substantive reasons. The mecha-
nisms leading to differences in mean test scores across groups are
not necessarily the same as those leading to expected differences in
slopes across groups. For example, Sackett, Kuncel, Arneson,
Cooper, and Waters (2009) provided evidence that socioeconomic
status is related to postsecondary admissions test scores but not to
grades. So, socioeconomic status affects test scores but may not
necessarily affect the relationship between test scores and criteria.
In other words, although one may not be comfortable with the fact
that higher socioeconomic status gives some applicants an advan-
tage and one may not be comfortable with the associated societal
consequences, “test scores contain meaningful information predic-
tive of academic performance” (Sackett, Kuncel, et al., 2009, p. 2),
but socioeconomic status does not necessarily moderate the rela-
tionship between test scores and outcomes. The expectation that
there are slope-based differences across groups is not based on
differences in socioeconomic status but, rather, on sociohistorical–
cultural and social psychological explanations. Next, we provide
examples of the types of mechanisms that may cause slope-based
differences across ethnic-based groups.

The sociohistorical–cultural explanation relies on streams of
literature outside of the field of psychology indicating that mem-
bers of ethnic minority and ethnic majority groups do not share a
similar cultural frame of reference and identity (Ogbu, 1993).
Members of the minority group interpret discrimination against
them as more or less permanent and institutionalized and develop
“a folk theory of getting ahead which differs in some respects from
that of Euro-Americans” (p. 495). These frames of reference have
developed as a consequence of exclusion, segregation, and barriers
in opportunity structure that lasted many generations. For example,
several in-depth ethnographic studies reviewed by Ogbu (1993)
suggest that African Americans do not believe they have the same
chance of being successful compared to Euro-Americans with
similar school credentials. In addition, minorities

consciously and unconsciously perceive and interpret learning certain
things and acting in certain ways they associate with their “oppres-
sors,” their “enemies,” e.g., Euro-Americans, as threatening and there-
fore “resisted” . . . minorities perceive and interpret standard attitudes
and behaviors in IQ and other test-taking situations as falling within
the cultural frame of reference of Euro-Americans, not that of the
minorities. (p. 501)

Moreover, there are family and community pressures to not “act
White” (in the case of African American communities) or “act
gringo” (in the case of Latino communities). This different cultural

frame of reference leads some minority members to have lower
expectancies regarding the probability that obtaining high test
scores will lead to desirable rewards (Gould, 1999). In short,
cultural frames of reference affect how tests and testing situations
are interpreted. Thus, the meaning of test scores and the relation-
ship between test scores and measures of performance are ex-
pected to differ across majority and minority ethnic groups (Grubb
& Ollendick, 1986).

Social psychological explanations for why slope-based differ-
ences are expected across groups rely on the stereotype threat
literature (Steele & Aronson, 1995; Walton & Spencer, 2009).
Stereotype threat suggests that when the stereotype of a group to
which a test taker belongs becomes salient, a test taker’s concern
about being evaluated negatively due to his or her placement in
that group can lead to lowered levels of test performance. Al-
though stereotype threat is only one of several contextual factors
that affect test scores, it is “an important phenomenon with rele-
vance to testing settings” (Sackett, Hardison, & Cullen, 2004, p.
11). In addition to affecting test scores, stereotype threat is likely
to result in group-based slope differences because the effects of
stereotype threat on minorities are unlikely to be identical on test
(i.e., predictor) compared to performance (i.e., criterion) scores. As
noted by R. P. Brown and Day (2006), “the extent to which
stereotype threat influences predictive validity will depend on the
degree to which stereotype threat differentially influences predic-
tor and criterion scores” (p. 983). In short, differential effects of
stereotype threat on test and criterion scores are expected to lead to
slope-based differences for minority compared to majority group
members.

Reasons Why Intercept-Based Differences Favoring
Minority Group Members Are Found but Are
Inflated or Not Likely to Exist

There is widespread consensus that “the consistent finding is
overprediction [of performance], rather than undeprediction, for
Black and Hispanic students. . . . Findings for Blacks and Hispan-
ics in the employment domain parallel those in educational admis-
sions” (Sackett, Borneman, & Connelly, 2008, p. 223). In other
words, if differences are found regarding intercepts, they are such
that the intercept for the majority group is larger than the intercept
for the minority group, favoring minority group applicants be-
cause, if a common regression line is used, minority group mem-
bers’ scores are overpredicted. In the present study, we cast doubt
on this consistent finding regarding intercept differences favoring
minority group applicants because of inflated Type I error rates. In
other words, one may conclude that there are differences when
they in fact they do not exist. Also, if a difference exists in the
population, one may conclude that this difference is larger than it
actually is (Terris, 1997). So, our analysis is based on null hypoth-
esis statistical significance testing but also on the differences
between population and observed intercept-based test bias.

Although they did not provide analytic or empirical proof, Linn
and Werts (1971), and more recently Terris (1997), illustrated with
examples and graphs that the test for intercept differences testing
the null hypothesis H0: ��intercept

2 � 0 is likely to have inflated
Type I error rates when test scores are measured with error (i.e.,
�XX � 1) and when the test is correlated with the grouping variable
(i.e., �XG � 0). In addition, although not mentioned by Linn and
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Werts, range restriction also interacts with slope-based differences
across groups to affect Type I error rates. A correlation between X
and G indicates a difference between groups regarding test scores
(i.e., �� � �1x 	 �0x 
 0). Each of these conditions, test
reliability less than 1.0, test score mean differences between mi-
nority and majority groups in favor of the majority group, and
range restriction are the norm in the area of GMA testing (e.g.,
Roth, BeVier, Bobko, Switzer, & Tyler, 2001) and frequently
observed when other types of preemployment testing are used
(Hough & Oswald, 2000; Hough et al., 2001).

Appendix B includes a new analytic proof to explain why lack
of perfect test score reliability and differences in test scores be-
tween groups in favor of the majority group can lead to the
conclusion that a test is biased in favor of minority group members
when in fact such a difference does not exist in the population of
scores. This analytic proof has not been published elsewhere and
explains the precise mechanism underlying the illustration pro-
vided by Linn and Werts (1971), particularly in the case when
there is no slope-based bias across groups and there is range
restriction. Note that Linn (1984) examined the impact of test score
unreliability and group mean differences on observed over- or
underprediction. In a similar analysis, Humphreys (1986) exam-
ined the impact of bias at the item level in terms of differences in
item difficulty on group intercept differences. Millsap (1997, 1998,
2007) and Borsboom, Romeijn, and Wicherts (2008) extended
earlier work by studying the relationship between factorial invari-
ance, or measurement invariance, and intercept differences, or
predictive invariance. Taken together, this body of research ad-
dressed the effect of measurement error on spurious intercept
differences between groups that differ regarding test score means.
Our new proof is unique and extends previous work in that it
explains the effect of range restriction on the bias of intercept
differences. Additionally, our proof is unique and extends previous
research by estimating the degree to which Type I error rates are
inflated for different combinations of test score measurement error,
group mean differences, and range restriction. Consider the fol-
lowing equation showing the mechanism through which the size of
the intercept-based difference is affected by unreliability, differ-
ences in test scores across groups, and range restriction (see
Appendix B for the complete derivation of this approximation):

�� intercept
2 �

�ryG � rxy�pr�1 � pr���r�
2

1 � pr�1 � pr����r�
2 , (4)

where ��intercept
2 is the unique contribution of G beyond X (cf.

Equations 1–3), ryG is the measurement-error attenuated and range
restricted correlation coefficient between Y and G, rxy is the
measurement-error attenuated and range restricted correlation co-
efficient between test scores and the criterion, pr is the proportion
of the first group in the restricted samples, and ��r is the mean
difference in test scores between the groups in the restricted
samples.

Equation 4 can be used to compute the degree of bias associated
with G for a given level of measurement error and range restriction
associated with a specific cut score. This estimation assumes there
is no slope-based difference across the groups. As such, this
estimation serves the purpose of showing the mechanism by which
measurement error and differences in test scores across groups are
likely to produce a bias in Type I error rates. Notwithstanding, we

emphasize that this estimation does not include other factors,
including slope-based bias and interaction effects that, as we show
in our simulation, also have a substantial effect on the inflation of
Type I error rates and bias in parameter estimation.

Equation 4 can be used to estimate the probability of committing
a Type I error with the noncentral F-distribution (Mudholkar,
Chaubey, & Lin, 1976; E. S. Pearson & Hartley, 1951). Specifi-
cally, let f denote the probability distribution function for the
noncentral F-distribution and let the noncentral parameter be de-
fined by  � ��intercept

2 �n � 3�/�1 � ��intercept
2 � rxy

2 �. The
probability of identifying intercept differences is

P�F � F 1	�, 1, n	3
� � � �

F1	�, 1, n	3
�

�

f �F, 1, n � 3, �dF, (5)

where F 1	�, 1, n	3
� is the critical value for one and n 	 3 degrees of

freedom at the 1 	 � confidence level.
Equations 4 and 5 enable an understanding of the effect of test

score reliability, test score mean differences between groups, and
range restriction on Type I error rates of tests of intercept differ-
ences in the absence of slope-based bias. In fact, one can input
values into these equations to calculate how various situations
involving the operation of these design artifacts increase the like-
lihood of the conclusion that there is intercept-based bias in favor
of the minority group when this is actually not the case. Equation
4 also shows that if the mean test score is higher for the minority
group as opposed to the majority group (i.e., the opposite of what
is typically the case), then one would find that tests are biased in
favor of the majority group (i.e., overprediction of majority group
criterion scores).

Using Equations 4 and 5, consider the case of no intercept-based
test bias (i.e., the null hypothesis H0: ��intercept

2 � 0 is true). A
value of �XY � .50 is justifiable given that this is a typical value for
GMA tests (Schmidt & Hunter, 1998) and p � .80 given that it is
typical to have about 20% of minority group members. In the
unrealistic and almost impossible situation in which X is measured
without error (i.e., �XX � 1), if there is no difference in mean test
scores across the groups (also an unrealistic assumption in the
context of GMA testing), and the a priori Type I error rate is set at
.05, Equation 4 yields ��intercept

2 � 0 and the Type I error rate for
a sample size of 250 is .05. This is exactly the value we should
obtain given no true intercept-based differences. However, if in-
stead of assuming that �XX � 1 and �1x 	 �0x � 0, we use realistic
values of �XX � .80 and �1x 	 �0x � 1.0 (cf. Roth et al., 2001),
solving Equation 5 results in ��intercept

2 � .002. This effect may
not be perceived as being very large. However, the associated
Type I error rate for N � 250 is .117. In other words, a small
degree of bias inflates the Type I error rate by more than twice the
nominal level. Type I errors are inflated even more for larger
samples. For example, considering N � 1,500 (cf. Sackett, Kuncel,
Arneson, Cooper, & Waters, 2009, Table 1, p. 5), the associated
Type I error for a bias of .002 is .458. Stated differently, given
these parameter values and a very large sample size, we would
expect researchers to identify intercept differences nearly 46% of
the time due to chance alone. Finally, note that the degree of Type
I error inflation estimated using our analytic solution assumes that
there are no slope-based differences in the population. Results of
our Monte Carlo simulation reported herein demonstrate that Type
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I error rates are even higher and reach values in the .80s when
slope-based differences exist.

In short, we provide a new analytic proof to support and provide
a precise explanation for the illustrations discussed by Linn and
Werts (1971) and Terris (1997). Specifically, we show that re-
searchers are more likely to conclude incorrectly that performance
is overpredicted for members of the minority group when the mean
minority group test score is lower than the mean majority group
test score and test scores are measured with less than perfect
reliability, which are normative conditions in the context of GMA
and other types of preemployment testing.

To summarize material we have discussed to this point, the
established conclusion regarding slope-based bias in preemploy-
ment testing is that it is a rare occurrence. When bias exists, it is
about intercept differences favoring minority group members, but
not about slope differences. This finding, obtained by implement-
ing the widely accepted Cleary (1968) test bias assessment proce-
dure, has been replicated using various ethnic groups in the United
States including African Americans and Latinos as well as differ-
ent ethnic groups in other countries (e.g., Israel, South Africa, the
Netherlands). However, these established conclusions are not con-
sistent with recent methodological research showing that differen-
tial prediction assessment regarding slope-based differences is
usually conducted with insufficient levels of statistical power,
which can lead to the incorrect conclusion that bias does not exist
(i.e., Type II errors). Also, these established conclusions are not
consistent with expectations, mainly derived from theories outside
of the field of I/O psychology, that sociohistorical–cultural and
social psychological mechanisms are likely to lead to slope-based
differences across groups. In addition, our new derivation provides
analytic evidence that it is likely that the finding of intercept-based
differences favoring minority group members is a result of a
statistical artifact. In fact, given typical and frequently observed
conditions in human resource selection research such as less-than-
perfect test reliability and mean test score differences favoring the
majority group, we would expect to find artifactual intercept-based
differences favoring the minority group even if these differences
do not exist in the population. Finally, it makes conceptual sense
that intercept-based differences are smaller than they are believed
to be or even nonexistent and that a slope-based difference exists.
Specifically, if the expectation based on conceptual and statistical
arguments is true and there is no intercept-based bias and, instead,
there is slope-based bias, this would mean that observed perfor-
mance differences between groups (i.e., lower average test and
performance scores for members in the minority group) would be
explained by slope-based differences. Thus, the presence of slope-
based differences and the absence of intercept-based differences
are consistent with meta-analytic findings regarding observed per-
formance differences between groups (e.g., McKay & McDaniel,
2006; Walton & Spencer, 2009).

Figure 1 provides a graphic illustration of the previously estab-
lished conclusion (Panel A) and what may actually be happening
(Panels B and C) given the arguments and evidence we have
discussed thus far. This figure shows situations including a slope-
based difference and no intercept-based difference (Panel B) and a
slope-based difference and a small intercept-based difference
(Panel C). The situations illustrated in Panels B and C are consis-
tent with the meta-analytic findings regarding differences in both

test scores and performance in favor of the majority group (e.g.,
Walton & Spencer, 2009).

Given the arguments and evidence discussed thus far, we con-
ducted a Monte Carlo simulation to examine established conclu-
sions regarding bias in preemployment testing. We took advantage
of advanced Monte Carlo methodology by using a research design
with 3,185,000 unique cells and 15 billion 925 million individual
samples. By implementing a powerful and sensitive methodology,
we attempted to uncover patterns of relationships that may have
remained hidden during the past 40 years while human resource
selection researchers investigated test bias using samples that were
subject to the detrimental effects of methodological and statistical
artifacts.

Method

Overview

Our Monte Carlo simulation examined the effects of method-
ological and statistical artifacts on the accuracy of test bias assess-
ment regarding intercept- and slope-based differences. Our simu-
lation is the most exhaustive and comprehensive study to date to
examine established conclusions regarding bias in preemployment
testing. Factors manipulated included magnitude of intercept- and
slope-based test bias, total sample size, proportion of minority
group sample size to total sample size, predictor (i.e., preem-
ployment test scores) and criterion (i.e., job performance) reli-
ability, predictor range restriction, correlation between predic-
tor scores and the dummy-coded grouping variable (e.g.,
ethnicity, gender), and group mean difference on predictor
scores. We investigated a wide range of values for each of these
factors and their effects on the observed magnitude of intercept-
and slope-based bias as well as Type I error rates (when true
bias was set to zero in the population) and statistical power
(when true bias was set to larger than zero in the population) for
detecting intercept- and slope-based bias. The parameter values
included in our simulation were chosen to include the range of
values that are typical and also have been reported in some of
the most widely cited and influential sources for the established
conclusions regarding test bias in preemployment testing (e.g.,
Dunbar & Novick, 1988; Hartigan & Wigdor, 1989; Houston &
Novick, 1987; Hunter et al., 1984).

Manipulated Parameters

Total sample size. As is the case for any inferential test,
sample size affects statistical power. In our study, total sample
size was manipulated to vary from 100 to 1,000 in increments
of 100. Several published reviews of the human resource se-
lection literature ascertained that total sample size is usually
around 100 (Lent, Auerbach, & Levin, 1971; Monahan &
Muchinsky, 1983; Russell et al., 1994; Salgado, 1998). Accord-
ingly, our simulation used 100 as the lower bound value and 10
times that number as the upper bound value to go substantially
higher than the typical value.

Correlation between predictor and moderator: Proportion
of individuals in the minority group and average group differ-
ences in test scores. Similar to Dunlap and Kemery (1988) and
Evans (1985), we manipulated the correlation between the
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predictor X and the categorical moderator G using the equation
for the point-biserial correlation. Specifically, the correlation
between X and G was modeled by generating X scores as
follows:

X � �1 � �XG
2 Zx � �XGG, (6)

where Zx is derived from a standard normal distribution, G is a
dummy variable that equaled zero for the focal group (e.g., ethnic
minority group, women) and one for the reference group (e.g., the
ethnic majority group, men), and �XG is the correlation between X
and G. Note that G, while a dichotomous variable, was also
standardized (i.e., mean of zero and variance of one) to model the
relationship between X and G and the relationship between Y and

G. Also note that Dunlap and Kemery and Evans modeled a
continuous moderator variable, but in our study the moderator
variable G is a dichotomous variable. Thus, our procedure differs
slightly from Dunlap and Kemery and Evans in that the point-
biserial correlation between X and G is based upon mean differ-
ences in X between the two groups and the proportion of minority
group sample size to total sample size. Specifically, the point-
biserial correlation between X and G is a follows:

�XG �
��1 � �0��p�1 � p�

�X
, (7)

where the correlation between X and G is determined by the
product of the mean test score differences between the focal (�1x)

Figure 1. Illustration of the typical finding of no slope-based differences and intercept-based differences
favoring the minority group (Panel A), and the possibility that there are slope-based differences (Panels B and
C) together with no intercept-based differences (Panel B) and small intercept-based differences (Panel C).
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and reference (�0x) groups and a function of the proportion of
individuals in the focal group ( p) divided by the standard deviation
for X (i.e., �x).

In our study, �x � 1 for the focal and reference group for all
conditions, the mean difference on X between the focal and refer-
ence groups (�1x 	 �0x) in standard deviation units varied from
0.0 to 1.0 in increments of .25 (Roth et al., 2001), and the
proportion of individuals in the focal group varied from .1 to .5 in
increments of .1. In total, we included 25 different combinations of
p and �1x 	 �0x, and each combination yielded a unique value for
�XG. Table 1 includes the values for �XG for each combination of
p and �1x 	 �0x. In addition, results included in Table 1 confirm
the effect of p and �1x 	 �0x on �XG; the population correlation is
higher for larger values of �1x 	 �0x, and �XG is nonlinearly
related to p and reaches a maximum value when p equals .50.

Predictor and criterion reliability. Our simulation manipu-
lated test (�XX) and criterion (�YY) score reliability. Based on
material included in the introduction, we expected to find a neg-
ative relationship between �XX and Type I error rates for the
intercept-based test. On the other hand, we expected to find a
positive relationship between �XX and statistical power for the
slope-based test (Aguinis et al., 2001; Dunlap & Kemery, 1988;
Stone-Romero & Anderson, 1994). We set reliabilities to values
from .7 to 1.0 in increments of .05 with a total of seven levels. The
equations for introducing measurement error are the following:

x � ��xxX � �1 � �xx ex (8)

y � ��yyY � �1 � �yy ey, (9)

where x and y are test and criterion scores with measurement error,
and X and Y are the true (i.e., measurement-error free) scores. For
tests of GMA, reliabilities can be in the .90s (e.g., Wonderlic,
1999), but they can also be in the .80s for certain types of g-loaded
tests. For example, Rotundo and Sackett (1999) used the General
Aptitude Test Battery and reported that “predictor reliabilities
were in the .80 to .90 range” (p. 821). Moreover, reliabilities for
other types of preemployment tests such as situational judgment
tests and personality tests can be in the .70s and .80s (e.g.,

Mumford, Van Iddekinge, Morgeson, & Campion, 2008). Thus,
our simulation design included values to cover this range.

Range restriction. We manipulated range restriction in the
predictor X (i.e., truncation) given that previous simulation work
has demonstrated its detrimental effect on statistical power of the
slope-difference test (Aguinis & Stone-Romero, 1997). In addi-
tion, range restriction due to the use of a cut score has the effect of
reducing the upward bias in Type I error rates for the intercept-
difference test when there are no slope-based differences across
groups, as is assumed in our new analytic solution explaining the
phenomenon illustrated by Linn and Werts (1971). However, the
effects of range restriction are quite the opposite in the presence of
slope-based differences. Specifically, consider the case where
group intercepts are equivalent but the slopes differ across groups.
Results would indicate no intercept-based differences across
groups in the unrestricted sample. However, consider that we only
observe values above a given cut score. If slopes differ in the
presence of range restriction, the groups in the restricted sample
will appear to differ in intercepts. We manipulated range restric-
tion using the procedure described by Aguinis and Stone-Romero
(1997) where values on the predictor X were truncated. Moreover,
range restriction was simulated to represent the proportion of X
values that were used to estimate the regression model. The values
of range restriction varied from .10 (severe range restriction—only
the top 10% of scores in the distribution are retained as can be seen
in highly selective contexts) to 1.00 (no range restriction—all
scores in the distribution are retained) in increments of .10.

Magnitude of true intercept- and slope-based bias. The
effect size for intercept-based and slope-based test bias was mod-
eled to be equal in the population within each design cell. In this
way, we are able to observe any differential effects of the meth-
odological and statistical artifacts on the accuracy of the slope-
based test in relationship to the intercept-based test by holding true
test bias constant. If the true amount of test bias is not held
constant, we are unable to examine the relative impact of the
various statistical and methodological artifacts on sample-based
conclusions about the presence and degree of bias. Specifically,
the population change in Y variance explained (��2) was simu-
lated to be equal for both the first-order effect of the moderator G
and the X � G interaction (see Equations 1–3). The criterion was
generated in a manner similar to Evans’s (1985) approach with the
exception that the moderator G in this study is categorical rather
than continuous. The criterion was generated as a normally dis-
tributed variable with a mean of zero and variance of one using the
following equation:

Y � �1 � 2��2 � �xy
2 Zy � �xyX � ���2G � ���2XG,

(10)

where the validity coefficient between X and Y was held constant
at .50 (i.e., �XY � .50 for all permutations; Schmidt & Hunter,
1998), XG is the product between X and G, ��2 is the same for G
and XG in each design cell, Zy is generated from the standard
normal distribution, and Y is a normally distributed criterion with
a mean zero and unit variance. The ��2 effect sizes were simulated
to vary from values equal to 0 (i.e., no test bias in the population
for either the intercept or slope) to .15 (i.e., 15% of variance in Y
is explained by G above and beyond X, and 15% of variance in Y
is explained by XG above and beyond X and G). Our simulation

Table 1
Summary of Values for �XG for Various Values of p and
�1x 	 �0x

�1x 	 �0x

p

.10 .20 .30 .40 .50

.00 .00 .00 .00 .00 .00

.25 .08 .10 .11 .12 .13

.50 .15 .20 .23 .24 .25

.75 .23 .30 .34 .37 .38
1.00 .30 .40 .46 .49 .50

Note. The predictor X was standardized with a mean of zero and variance
of 1. �XG � correlation between test scores (X) and dummy-coded mod-
erator (G) denoting the grouping variable (e.g., ethnicity: 1 � majority,
0 � minority; gender: 1 � men, 0 � women); p � proportion of minority
group members relative to total sample size; �1x and �0x � average
predictor scores for the majority and minority groups, respectively (in
standardized scores).
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increased ��2 in increments of .005 for values from 0 to .10 and
in increments of .01 for values ranging from .10 to .15 for a total
of 26 levels. The ��2 values were chosen to cover the range of
values usually observed in applied psychology and management
(Aguinis et al., 2005; McClelland & Judd, 1993). Moreover, as
noted in the introduction, even small effects can be very meaning-
ful in human resource selection contexts when incorrect decisions
due to test bias affect thousands of individuals.

Dependent variables. Our simulation included two types of
dependent variables. First, we computed statistical power and
Type I error rates for the intercept-based and slope-based bias
assessment test. Second, we computed differences between popu-
lation and sample-based intercept-based and slope-based effects
(i.e., ��intercept

2 vs. �Rintercept
2 and ��slope

2 vs. �Rslope
2 ). Thus, our

study does not examine results regarding statistical significance
exclusively but also examines bias in the estimation of effect sizes.
Regarding the computation of statistical power and Type I error
rates, power was the probability of rejecting the null hypothesis of
no test bias when the null hypothesis was false, and Type I error
rate was the probability of rejecting the null hypothesis of test bias
when the null hypothesis was true. We set the nominal Type I error
rate at .05.

Simulation Procedure

Our simulation included a full-factorial design crossing all val-
ues for the manipulated parameters. This resulted in 3,185,000
unique combinations of parameter values. Table 2 provides a
summary of each manipulated parameter and its values. We drew
5,000 samples for each parameter value combination in the re-
search design, resulting in a total of 15 billion 925 million indi-
vidual samples including more than 8 trillion (i.e.,
8,662,500,000,000) individual scores. Information regarding de-
tails of the computer program (e.g., language, time to execute) is
available from the authors upon request.

Key Accuracy Checks

We checked the accuracy of the simulation procedure using the
following two methods. First, we compared population ��intercept

2

and ��slope
2 values against their sample-based estimates Rintercept

2

and Rslope
2 for N values of 1,000, based on 5,000 replications, and

without introducing any methodological and statistical artifacts
(i.e., p � .5, range restriction (RR) � 1.0, �XG � 0, and �XX �
�YY � 1.0). Results confirmed the accuracy of the simulation
procedures: The (true) population and (estimated) sample-based
test bias values were virtually identical across the entire range of
effect sizes for the intercept-difference and slope-difference test.
As a second set of analyses for checking the accuracy of the
simulation, we investigated the extent to which the estimated Type
I error rates for the intercept-difference and slope-difference tests
were close to the nominal level of .05. We held reliabilities for X
and Y constant at 1.0, RR � 1.0 (i.e., no range restriction), and
�1x 	 �0x (i.e., difference in mean test scores across groups) at
zero. Results confirmed the high degree of accuracy of the simu-
lation procedures: The average absolute value difference between
the nominal Type I error rate of .05 and the empirically derived
Type I error rates was .0020 for the intercept-difference test and
.0025 for the slope-difference test. Detailed results and tables
regarding these two types of key accuracy checks are available
from the authors upon request.

Results

We report results in three sections. First, we present results on
test bias assessment regarding slope-based differences. Recall that
in the introduction we provided reasons why slope-based differ-
ences could exist but are not found. Second, we present results on
test bias assessment regarding intercept-based differences. Recall
that in the introduction we provided reasons why intercept-based
differences favoring minority group members are found but may
not necessarily exist and if they exist they could be smaller than
they are believed to be. Finally, we describe results comparing the
factors affecting the relative accuracy of slope-based bias assess-
ment in relationship to intercept-based bias assessment.

Test Bias Assessment Based on Slope
Differences Across Groups

First, it is informative to compute the mean statistical power across
the 3,062,500 cells in our design for which there is true population
slope-based test bias. Across these cells, the mean predictor (i.e., test
scores) and criterion reliability is .85, test score range restriction is .55,
total N is 550, proportion of minority group sample size to total
sample size is .30, difference between majority and minority predictor
scores is .50 SD units, correlation between test scores X and moderator
variable G is .11, and population slope-based bias (i.e., ��slope

2 ) is .068
(i.e., 6.8% of variance in Y is explained by the X � G interaction
above and beyond the effects of X and G). For this combination of
parameter values, statistical power to detect slope-based bias is about
as good as flipping a coin: only .56. Also, as is expected given the
detrimental impact of methodological and statistical artifacts de-
scribed in the introduction, the estimated sample-based �Rslope

2 is
substantially smaller than its population counterpart: It is only .0107,
which is 15.7% the size of its population counterpart.

Table 2
Summary of Parameter Values Included in the Simulation

Manipulated
parameter

No. of
levels

Low
value

High
value Increment

��2 26 .00 .15 a

RR 10 .10 1.00 .10
N 10 100 1,000 100
�XX 7 .70 1.00 .05
�YY 7 .70 1.00 .05
�XG

p 5 .10 .50 .10
�1x 	 �0x 5 .00 1.00 .25

Note. Combining all parameter values resulted in the generation of 15
billion 925 million individual samples in 3,185,000 unique design cells.
��2 � population-based test bias; RR � range restriction (i.e., truncation
on X); �XX � predictor scores reliability; �YY � criterion scores reliability;
�XG � correlation between continuous predictor X and dichotomous mod-
erator G; p � proportion of minority group sample size to total sample size;
�1x 	 �0x � average difference between majority and minority predictor
scores.
a The test bias parameter ��2 increased in value by .005 from .00 to .10
and by .01 from .10 to .15.
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Tables 3– 6 include results regarding statistical power and
estimated sample-based effect sizes for a representative set of
parameter value combinations (more comprehensive tables
based on the 3,185,000 design cells are available from the
authors). We created these tables to include values that are
observed in various human resource selection contexts using
different types of tests including GMA, personality, situational
judgment, application blanks, and so forth. For example, al-
though the reliability for GMA tests can be in the .90s, the
(interrater) reliability for the selection interview is in the .70s
(Conway, Jako, & Goodman, 1995) and the reliability of some
g-loaded tests can be in the .80s (Rotundo & Sackett, 1999).
Similarly, although the mean total sample size in human re-
source selection research is around 100, some human resource
selection research studies include larger samples (Aguinis et al.,
2005). Thus, taken together, results in Tables 3– 6 provide good
coverage of frequently observed situations.

Table 3 includes values for a total sample size of 300 or 400,
reliabilities for tests scores and the criterion of .80 or .85, propor-
tion of minority group members to total sample size of .20 or .30,
average difference of .50 SD units between majority and minority
test scores, range restriction of .30 or .40, and correlation between
test scores and ethnicity of .20 or .23. Also, Table 3 shows the
resulting power and sample-based effect sizes when the true pop-
ulation slope-based bias is ��slope

2 � .01 and ��slope
2 � .02.

Slope-based test bias of this magnitude is sufficiently large to
produce large and practically significant rates of prediction errors
(i.e., false positives and false negatives; Aguinis & Smith, 2007,
2009). Overall, the average power for all combinations of param-
eter values shown in Table 3 and ��slope

2 � .01 is only .089, and
the observed sample-based effect size is .001, which is 10% the
value of its population counterpart. The situation in terms of power
and observed effect size does not improve much when ��slope

2 is
increased to .02. Specifically, mean statistical power is .130 and

Table 3
Statistical Power and Observed Effect Size for Intercept- and Slope-Based Test Bias for Selected Set of Parameter Values (Part 1)

N �XX �YY p �1x 	 �0x �XG RR

Intercept differences Slope differences

��2 � .01 ��2 � .02 ��2 � .01 ��2 � .02

Power �R2 Power �R2 Power �R2 Power �R2

300 .80 .80 .20 .50 .20 .30 .814 .024 .975 .044 .074 .000 .091 .001
400 .80 .80 .20 .50 .20 .30 .914 .024 .994 .043 .079 .000 .103 .001
300 .80 .80 .20 .50 .20 .40 .779 .022 .963 .040 .068 .001 .093 .001
400 .80 .80 .20 .50 .20 .40 .880 .022 .989 .039 .080 .001 .111 .001
300 .80 .85 .20 .50 .20 .30 .836 .025 .985 .047 .075 .001 .092 .001
400 .80 .85 .20 .50 .20 .30 .932 .026 .995 .046 .080 .000 .108 .001
300 .80 .85 .20 .50 .20 .40 .804 .023 .971 .042 .069 .001 .097 .001
400 .80 .85 .20 .50 .20 .40 .902 .023 .992 .042 .084 .001 .115 .001
300 .85 .80 .20 .50 .20 .30 .801 .023 .974 .043 .073 .001 .093 .001
400 .85 .80 .20 .50 .20 .30 .903 .023 .993 .042 .079 .000 .109 .001
300 .85 .80 .20 .50 .20 .40 .764 .021 .956 .038 .072 .001 .102 .001
400 .85 .80 .20 .50 .20 .40 .865 .021 .988 .038 .078 .001 .115 .001
300 .85 .85 .20 .50 .20 .30 .824 .024 .983 .045 .073 .001 .096 .001
400 .85 .85 .20 .50 .20 .30 .922 .025 .996 .045 .080 .001 .114 .001
300 .85 .85 .20 .50 .20 .40 .788 .022 .967 .041 .073 .001 .103 .001
400 .85 .85 .20 .50 .20 .40 .887 .022 .991 .041 .081 .001 .119 .001
300 .80 .80 .30 .50 .23 .30 .881 .029 .990 .053 .088 .001 .128 .002
400 .80 .80 .30 .50 .23 .30 .953 .029 .999 .053 .102 .001 .157 .002
300 .80 .80 .30 .50 .23 .40 .851 .027 .985 .047 .094 .001 .136 .002
400 .80 .80 .30 .50 .23 .40 .935 .026 .997 .047 .104 .001 .169 .002
300 .80 .85 .30 .50 .23 .30 .903 .031 .995 .056 .090 .001 .131 .002
400 .80 .85 .30 .50 .23 .30 .967 .031 1.000 .056 .106 .001 .165 .002
300 .80 .85 .30 .50 .23 .40 .874 .028 .991 .050 .099 .001 .145 .002
400 .80 .85 .30 .50 .23 .40 .950 .028 .998 .050 .112 .001 .179 .002
300 .85 .80 .30 .50 .23 .30 .866 .028 .989 .051 .089 .001 .134 .002
400 .85 .80 .30 .50 .23 .30 .950 .028 .998 .051 .104 .001 .165 .002
300 .85 .80 .30 .50 .23 .40 .841 .025 .980 .046 .099 .001 .150 .002
400 .85 .80 .30 .50 .23 .40 .926 .025 .996 .046 .112 .001 .182 .002
300 .85 .85 .30 .50 .23 .30 .889 .030 .992 .055 .093 .001 .141 .002
400 .85 .85 .30 .50 .23 .30 .961 .030 .999 .054 .109 .001 .175 .002
300 .85 .85 .30 .50 .23 .40 .866 .027 .988 .049 .103 .001 .158 .003
400 .85 .85 .30 .50 .23 .40 .943 .027 .997 .049 .117 .001 .190 .002

M

350 .83 .83 .25 .50 .22 .35 .880 .026 .988 .047 .089 .001 .130 .002

Note. ��2 � population-based effect size (i.e., test bias); N � total sample size; �XX � test reliability; �YY � criterion reliability; p � proportion of
minority group sample size to total sample size; �1x 	 �0x � average standard deviation-unit difference between majority and minority test scores; �XG �
correlation between test scores and moderator G; RR � range restriction; �R2 � sample-based effect size (i.e., test bias) estimate.
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the sample-based effect size is .002, which is also 10% the value
of its population counterpart.

Results shown in Table 3 are consistent in terms of the low
statistical power and the underestimation of population slope-
based test bias. For example, consider the first line in Table 3,
which refers to a total sample size of 300, X and Y reliabilities of
.80, proportion of minority group members to total sample size of
.20, average difference in mean test scores between the majority
and minority group of .50 SD, a correlation between test scores X
and the moderator G of .20, and range restriction of .30. For this
situation, power is .074 when ��slope

2 � .01 and .091 when
��slope

2 � .02. Moreover, estimated effect sizes are only
�Rslope

2 � .000 and .001, respectively.
Table 4 includes parameter values that, from a research design

and measurement perspective, are more desirable than those in
Table 3 because sample size is larger, reliabilities are higher,
proportions of majority and minority group members are not as
different from each other, and range restriction is not as severe.
From a substantive perspective, the difference in mean test scores
across the groups is not as large as in Table 3 and, similarly, the
correlation between test scores and the moderator is low. Specif-
ically, total sample size is 500 or 600, reliabilities for tests scores
and the criterion are .90 or .95, proportion of minority group
members to total sample size is .40 or .50, there is a difference
between majority and minority mean test scores of 0 or .25 SD,
range restriction is .50 or .60, and there is a correlation between
test scores and the grouping moderator variable of 0, .12, or .13.
Table 4 shows the resulting power and sample-based effect sizes
when the population slope-based bias is ��slope

2 � .03 and
��slope

2 � .04. For ��slope
2 � .03, across all combinations of

parameter values, the power to detect slope-based test bias is .74
and the sample-based �Rslope

2 is .01, which is about 30% the value
of the population effect. For ��slope

2 � .04, across all combina-
tions of parameter values, the power to detect slope-based test bias
is .86 and the sample-based �Rslope

2 is .013. Selecting specific
entries in Table 4 shows that, even for those conditions that are
more conducive to detecting slope-based test bias compared to
those in Table 3, power is still insufficient. For example, consider
Line 33 in Table 4: Sample size is 500, reliabilities for test scores
and the criterion are .90, 40% of the sample consists of minority
group members, the difference between majority and minority
mean test scores is .25 SD units, the correlation between test scores
and the moderator is only .12, and range restriction is .50. The
probability of detecting a population slope-based test bias effect of
��slope

2 � .03 is only .61. Moreover, the estimate of the size of
slope-based test bias is only .008, which is 26.7% the size of its
population counterpart.

Table 5 includes a third set of results. Although less desirable
from a research design and measurement standpoint, the parameter
value combinations shown in Table 5 are not infrequent in the
preemployment testing literature. Specifically, Table 5 includes a
total sample size of 100 (which, as noted earlier, is approximately
the average in human resource selection research), reliabilities for
test scores and the criterion of .70 or .75 (which, as noted earlier,
is not uncommon for certain types of tests such as situational
judgment and interviews), proportion of minority group members
to total sample size of .10, a mean difference between test scores
for the majority and minority groups of .75 or 1.00, correlation
between test scores and the moderator of .23 or .30, and range

restriction of .10 or .20. For these parameter value combinations,
Table 5 shows that slope-based test bias would virtually never be
found when ��slope

2 � .005. The probability of detecting slope-
based test bias is never greater than .054. Moreover, sample-based
effect sizes are estimated to be .000 or smaller in every case.

Finally, Table 6 includes combinations of parameter values that
are most typical of GMA tests. Specifically, the average total
sample size is 533 (ranging from 100 to 1,000), average test score
reliability is .90 (ranging from .85 to .95), criterion reliability is
.85, the proportion of members in the minority group to total
sample size is .20 or .30, standardized mean test score differences
favoring the majority group are .75 or 1.00, and the average range
restriction value is .40 or .60. In Table 6, Part 1 includes true test
bias of .01, Part 2 includes true test bias of .02, Part 3 includes true
test bias of .03, and Part 4 includes true test bias of .04. Once
again, results are consistent with those presented in the previous
tables: Overall, statistical power is inadequate to detect slope-
based bias and the degree of bias is underestimated. For example,
the average values for statistical power are only .14, .23, .31, and
.39 in Parts 1–4, respectively.

Relative impact of manipulated parameters on statistical
power to detect slope-based test bias. We conducted a regres-
sion analysis in which the criterion was statistical power values
(i.e., rejection rates of the null hypothesis ��slope

2 � 0 when
��slope

2 � 0) and the predictors were the eight parameters ma-
nipulated in the simulation and their two-way interactions. This
analysis allows us to understand the relative impact of the eight
manipulated parameters and their two-way interactions on the
power to detect slope-based test bias. We standardized each pre-
dictor before computing two-way products, and we estimated
standardized regression weights to facilitate the interpretation of
the relative strength of the effects given the very different metrics
used for the scales for each predictor (e.g., N ranging from 100 to
1,000 vs. reliability ranging from .70 to 1.00). Results shown in
Table 7 (columns labeled Power: Slope) indicate that population
effect size (� � .51), total sample size (� � .43), correlation
between test scores and minority status (� � .41), proportion of
minority group members relative to total sample size (� � .27),
and range restriction (� � .31) are the largest first-order effects.
For example, a 1 SD unit increase in the proportion of minority
group members relative to total sample size leads to a .27 SD unit
increase in statistical power, holding all other variables in the
model constant. These effects corroborate and expand results re-
ported by Aguinis and Stone-Romero (1997), albeit their simula-
tion design was smaller than ours. In addition, although not inves-
tigated by Aguinis and Stone-Romero, results show that test score
reliability (� � .11) and criterion score reliability (� � .10) also
affect power. Results in Table 7 also show that, although smaller
in magnitude, there are several significant two-way interactions.
As noted by Aguinis and Stone-Romero, these results indicate that
various methodological and statistical artifacts interact to decrease
the power to detect slope-based bias.

Table 7 (columns labeled Type I error: Slope) also includes regres-
sion results using Type I error rates as the criterion (i.e., rejection rates
of the null hypothesis ��slope

2 � 0 when ��slope
2 � 0). As shown in

Table 7, these regression weights are smaller than .00 for every
first-order and two-way interaction effect, and four of the first-
order effects are statistically nonsignificant at the .05 level. Thus,
these results indicate that although the manipulated parameters
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Table 4
Statistical Power and Observed Effect Size for Intercept- and Slope-Based Test Bias for Selected Set of Parameter Values (Part 2)

N �XX �YY p �1x 	 �0x �XG RR

Intercept differences Slope differences

��2 � .03 ��2 � .04 ��2 � .03 ��2 � .04

Power �R2 Power �R2 Power �R2 Power �R2

500 .90 .90 .40 .00 .00 .50 1.0 .083 1.0 .110 .608 .008 .744 .011
600 .90 .90 .40 .00 .00 .50 1.0 .083 1.0 .110 .686 .008 .819 .011
500 .90 .90 .40 .00 .00 .60 1.0 .071 1.0 .093 .670 .009 .795 .012
600 .90 .90 .40 .00 .00 .60 1.0 .070 1.0 .092 .750 .009 .873 .012
500 .90 .95 .40 .00 .00 .50 1.0 .088 1.0 .116 .635 .009 .772 .011
600 .90 .95 .40 .00 .00 .50 1.0 .088 1.0 .116 .721 .009 .849 .011
500 .90 .95 .40 .00 .00 .60 1.0 .075 1.0 .098 .698 .010 .826 .013
600 .90 .95 .40 .00 .00 .60 1.0 .074 1.0 .098 .780 .010 .896 .013
500 .95 .90 .40 .00 .00 .50 1.0 .086 1.0 .113 .638 .009 .773 .011
600 .95 .90 .40 .00 .00 .50 1.0 .086 1.0 .113 .720 .009 .845 .011
500 .95 .90 .40 .00 .00 .60 1.0 .073 1.0 .095 .702 .010 .824 .013
600 .95 .90 .40 .00 .00 .60 1.0 .072 1.0 .095 .787 .010 .893 .013
500 .95 .95 .40 .00 .00 .50 1.0 .091 1.0 .120 .665 .009 .803 .012
600 .95 .95 .40 .00 .00 .50 1.0 .091 1.0 .120 .748 .009 .873 .012
500 .95 .95 .40 .00 .00 .60 1.0 .077 1.0 .101 .734 .011 .852 .014
600 .95 .95 .40 .00 .00 .60 1.0 .077 1.0 .101 .808 .011 .920 .014
500 .90 .90 .50 .00 .00 .50 1.0 .090 1.0 .120 .676 .010 .808 .013
600 .90 .90 .50 .00 .00 .50 1.0 .091 1.0 .120 .755 .010 .871 .013
500 .90 .90 .50 .00 .00 .60 1.0 .077 1.0 .101 .747 .011 .854 .014
600 .90 .90 .50 .00 .00 .60 1.0 .076 1.0 .101 .822 .011 .921 .015
500 .90 .95 .50 .00 .00 .50 1.0 .096 1.0 .127 .708 .010 .837 .014
600 .90 .95 .50 .00 .00 .50 1.0 .097 1.0 .127 .785 .010 .894 .014
500 .90 .95 .50 .00 .00 .60 1.0 .081 1.0 .107 .775 .012 .879 .015
600 .90 .95 .50 .00 .00 .60 1.0 .081 1.0 .107 .847 .012 .939 .016
500 .95 .90 .50 .00 .00 .50 1.0 .093 1.0 .123 .704 .010 .834 .014
600 .95 .90 .50 .00 .00 .50 1.0 .094 1.0 .123 .784 .010 .898 .014
500 .95 .90 .50 .00 .00 .60 1.0 .079 1.0 .104 .773 .012 .878 .015
600 .95 .90 .50 .00 .00 .60 1.0 .078 1.0 .104 .845 .012 .933 .016
500 .95 .95 .50 .00 .00 .50 1.0 .099 1.0 .131 .737 .011 .858 .014
600 .95 .95 .50 .00 .00 .50 1.0 .100 1.0 .131 .818 .011 .923 .014
500 .95 .95 .50 .00 .00 .60 1.0 .084 1.0 .110 .804 .013 .899 .016
600 .95 .95 .50 .00 .00 .60 1.0 .083 1.0 .110 .871 .013 .950 .017
500 .90 .90 .40 .25 .12 .50 1.0 .080 1.0 .105 .606 .008 .743 .010
600 .90 .90 .40 .25 .12 .50 1.0 .081 1.0 .105 .686 .008 .818 .010
500 .90 .90 .40 .25 .12 .60 1.0 .069 1.0 .090 .668 .009 .792 .011
600 .90 .90 .40 .25 .12 .60 1.0 .069 1.0 .090 .752 .009 .872 .012
500 .90 .95 .40 .25 .12 .50 1.0 .085 1.0 .111 .632 .008 .772 .011
600 .90 .95 .40 .25 .12 .50 1.0 .085 1.0 .111 .717 .008 .847 .011
500 .90 .95 .40 .25 .12 .60 1.0 .073 1.0 .095 .696 .010 .825 .012
600 .90 .95 .40 .25 .12 .60 1.0 .073 1.0 .095 .778 .010 .894 .012
500 .95 .90 .40 .25 .12 .50 1.0 .081 1.0 .106 .638 .008 .773 .011
600 .95 .90 .40 .25 .12 .50 1.0 .081 1.0 .106 .721 .008 .845 .011
500 .95 .90 .40 .25 .12 .60 1.0 .069 1.0 .090 .701 .010 .822 .012
600 .95 .90 .40 .25 .12 .60 1.0 .069 1.0 .090 .785 .010 .892 .013
500 .95 .95 .40 .25 .12 .50 1.0 .086 1.0 .112 .665 .009 .801 .011
600 .95 .95 .40 .25 .12 .50 1.0 .086 1.0 .112 .746 .009 .873 .011
500 .95 .95 .40 .25 .12 .60 1.0 .073 1.0 .095 .734 .010 .850 .013
600 .95 .95 .40 .25 .12 .60 1.0 .073 1.0 .095 .806 .010 .921 .013
500 .90 .90 .50 .25 .13 .50 1.0 .087 1.0 .114 .675 .009 .810 .012
600 .90 .90 .50 .25 .13 .50 1.0 .088 1.0 .114 .754 .009 .872 .012
500 .90 .90 .50 .25 .13 .60 1.0 .075 1.0 .098 .746 .011 .856 .014
600 .90 .90 .50 .25 .13 .60 1.0 .074 1.0 .097 .822 .011 .919 .014
500 .90 .95 .50 .25 .13 .50 1.0 .092 1.0 .121 .707 .010 .837 .013
600 .90 .95 .50 .25 .13 .50 1.0 .093 1.0 .121 .787 .010 .891 .013
500 .90 .95 .50 .25 .13 .60 1.0 .079 1.0 .103 .774 .011 .879 .015
600 .90 .95 .50 .25 .13 .60 1.0 .079 1.0 .103 .847 .012 .939 .015
500 .95 .90 .50 .25 .13 .50 1.0 .088 1.0 .115 .702 .010 .833 .013
600 .95 .90 .50 .25 .13 .50 1.0 .088 1.0 .115 .785 .010 .898 .013
500 .95 .90 .50 .25 .13 .60 1.0 .075 1.0 .098 .773 .011 .877 .015
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have a large detrimental effect on statistical power, they do not
have a noticeable detrimental effect on Type I error rates (i.e.,
incorrectly concluding that there is slope-based test bias).

In sum, results reported in Tables 3–6 demonstrate that slope-
based test bias is unlikely to be detected given values of total
sample size, range restriction, predictor and criterion scores reli-
ability, proportion of minority group sample size to total sample
size, and differences between test scores across groups that cover
a range usually observed in the preemployment testing literature.
In fact, these results indicate that slope-based test bias is likely to
go undetected even when reliabilities are very high (i.e., .95),
sample size is about 10 times the average reported in the preem-
ployment test validation literature (i.e., 1,000), and differences in

test scores between minority and majority group members is half
the size usually reported for GMA testing (i.e., .50 SD units).

Test Bias Assessment Based on Intercept
Differences Across Groups

It is informative to compute the sample-based effect size for
intercept-based differences (i.e., �Rintercept

2 ) across the entire sim-
ulation design given that the true average population test bias
effect is ��intercept

2 � .065. Across all 3,185,000 cells, the mean
predictor and criterion scores reliability is .85, range restriction is
.55, total N is 550, proportion of minority group sample size to

(text continues on page 665)

Table 4 (continued )

N �XX �YY p �1x 	 �0x �XG RR

Intercept differences Slope differences

��2 � .03 ��2 � .04 ��2 � .03 ��2 � .04

Power �R2 Power �R2 Power �R2 Power �R2

600 .95 .90 .50 .25 .13 .60 1.0 .075 1.0 .098 .846 .012 .932 .015
500 .95 .95 .50 .25 .13 .50 1.0 .093 1.0 .122 .735 .010 .858 .014
600 .95 .95 .50 .25 .13 .50 1.0 .094 1.0 .122 .817 .010 .922 .014
500 .95 .95 .50 .25 .13 .60 1.0 .080 1.0 .104 .805 .012 .897 .016
600 .95 .95 .50 .25 .13 .60 1.0 .079 1.0 .104 .870 .012 .950 .016

M

550 .925 .925 .45 .125 .0625 .55 1.0 .082 1.0 .108 .743 .010 .860 .013

Note. ��2 � population-based effect size (i.e., test bias); �XX � test reliability; �YY � criterion reliability; p � proportion of minority group sample size
to total sample size; �1x 	 �0x � average standard deviation-unit difference between majority and minority test scores; �XG � correlation between test
scores and moderator G; RR � range restriction; �R2 � sample-based effect size (i.e., test bias) estimate.

Table 5
Statistical Power and Observed Effect Size for Intercept- and Slope-Based Test Bias for Selected Set of Parameter Values (Part 3)

N �XX �yy p �1x 	 �0x �xg RR

Intercept differences
(��2 � .005)

Slope differences
(��2 � .005)

Power �R2 Power �R2

100 .70 .70 .10 .75 .23 .10 .205 .012 .051 .000
100 .70 .70 .10 .75 .23 .20 .197 .012 .049 .000
100 .70 .75 .10 .75 .23 .10 .220 .013 .050 .000
100 .70 .75 .10 .75 .23 .20 .211 .013 .047 .000
100 .75 .70 .10 .75 .23 .10 .198 .011 .052 .000
100 .75 .70 .10 .75 .23 .20 .180 .011 .047 .000
100 .75 .75 .10 .75 .23 .10 .213 .012 .052 .000
100 .75 .75 .10 .75 .23 .20 .190 .012 .046 .000
100 .70 .70 .10 1.00 .30 .10 .213 .013 .054 .000
100 .70 .70 .10 1.00 .30 .20 .213 .013 .048 .000
100 .70 .75 .10 1.00 .30 .10 .228 .014 .052 .000
100 .70 .75 .10 1.00 .30 .20 .226 .013 .050 .000
100 .75 .70 .10 1.00 .30 .10 .201 .011 .053 .000
100 .75 .70 .10 1.00 .30 .20 .189 .011 .046 .000
100 .75 .75 .10 1.00 .30 .10 .214 .012 .053 .000
100 .75 .75 .10 1.00 .30 .20 .200 .012 .045 .000

M

100 .725 .725 .10 .875 .265 .15 .206 .012 .050 .000

Note. ��2 � population-based effect size (i.e., test bias); �XX � test reliability; �YY � criterion reliability; p � proportion of minority group sample size
to total sample size; �1x 	 �0x � average standard deviation-unit difference between majority and minority test scores; �XG � correlation between test
scores and moderator G; RR � range restriction; �R2 � sample-based effect size (i.e., test bias) estimate.
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Table 6
Statistical Power and Observed Effect Size for Intercept- and Slope-Based Test Bias for Selected Set of Prototypical Parameter
Values in General Mental Abilities Testing

N �XX �yy p �1x 	 �0x �xg RR

Intercept differences Slope differences

Power �R2 Power �R2

Part 1 (��2 � .01)

100 .85 .85 .20 .75 .30 .40 .351 .021 .050 .001
100 .85 .85 .20 .75 .30 .60 .319 .018 .064 .001
100 .85 .85 .20 1.00 .40 .40 .339 .020 .049 .000
100 .85 .85 .20 1.00 .40 .60 .320 .017 .062 .001
100 .85 .85 .30 .75 .34 .40 .401 .025 .058 .001
100 .85 .85 .30 .75 .34 .60 .356 .021 .071 .002
100 .85 .85 .30 1.00 .46 .40 .374 .022 .057 .001
100 .85 .85 .30 1.00 .46 .60 .349 .020 .069 .001
100 .95 .85 .20 .75 .30 .40 .302 .017 .056 .001
100 .95 .85 .20 .75 .30 .60 .267 .014 .066 .001
100 .95 .85 .20 1.00 .40 .40 .264 .014 .054 .001
100 .95 .85 .20 1.00 .40 .60 .242 .013 .065 .001
100 .95 .85 .30 .75 .34 .40 .339 .020 .066 .001
100 .95 .85 .30 .75 .34 .60 .303 .016 .078 .002
100 .95 .85 .30 1.00 .46 .40 .283 .016 .066 .001
100 .95 .85 .30 1.00 .46 .60 .269 .014 .074 .002
500 .85 .85 .20 .75 .30 .40 .946 .021 .094 .001
500 .85 .85 .20 .75 .30 .60 .915 .019 .117 .001
500 .85 .85 .20 1.00 .40 .40 .934 .020 .088 .001
500 .85 .85 .20 1.00 .40 .60 .913 .018 .114 .001
500 .85 .85 .30 .75 .34 .40 .971 .025 .132 .001
500 .85 .85 .30 .75 .34 .60 .941 .021 .169 .002
500 .85 .85 .30 1.00 .46 .40 .955 .022 .129 .001
500 .85 .85 .30 1.00 .46 .60 .936 .020 .157 .001
500 .95 .85 .20 .75 .30 .40 .900 .018 .104 .001
500 .95 .85 .20 .75 .30 .60 .850 .015 .125 .001
500 .95 .85 .20 1.00 .40 .40 .849 .014 .102 .001
500 .95 .85 .20 1.00 .40 .60 .811 .013 .121 .001
500 .95 .85 .30 .75 .34 .40 .935 .020 .149 .001
500 .95 .85 .30 .75 .34 .60 .884 .016 .187 .002
500 .95 .85 .30 1.00 .46 .40 .879 .016 .142 .001
500 .95 .85 .30 1.00 .46 .60 .833 .014 .177 .002

1,000 .85 .85 .20 .75 .30 .40 .999 .022 .140 .001
1,000 .85 .85 .20 .75 .30 .60 .997 .018 .171 .001
1,000 .85 .85 .20 1.00 .40 .40 .999 .020 .132 .001
1,000 .85 .85 .20 1.00 .40 .60 .996 .018 .164 .001
1,000 .85 .85 .30 .75 .34 .40 .999 .025 .228 .001
1,000 .85 .85 .30 .75 .34 .60 .999 .021 .284 .002
1,000 .85 .85 .30 1.00 .46 .40 .999 .022 .216 .001
1,000 .85 .85 .30 1.00 .46 .60 .999 .020 .268 .001
1,000 .95 .85 .20 .75 .30 .40 .996 .018 .167 .001
1,000 .95 .85 .20 .75 .30 .60 .988 .015 .204 .001
1,000 .95 .85 .20 1.00 .40 .40 .987 .015 .158 .001
1,000 .95 .85 .20 1.00 .40 .60 .979 .013 .193 .001
1,000 .95 .85 .30 .75 .34 .40 .998 .020 .271 .001
1,000 .95 .85 .30 .75 .34 .60 .993 .016 .331 .002
1,000 .95 .85 .30 1.00 .46 .40 .993 .016 .259 .001
1,000 .95 .85 .30 1.00 .46 .60 .986 .014 .315 .002

M

533 .90 .85 .25 .875 .375 .50 .738 .018 .138 .001

Part 2 (��2 � .02)

100 .85 .85 .20 .75 .30 .40 .580 .038 .070 .001
100 .85 .85 .20 .75 .30 .60 .514 .032 .075 .002
100 .85 .85 .20 1.00 .40 .40 .546 .033 .070 .001
100 .85 .85 .20 1.00 .40 .60 .499 .030 .076 .001
100 .85 .85 .30 .75 .34 .40 .653 .044 .084 .002
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Table 6 (continued )

N �XX �yy p �1x 	 �0x �xg RR

Intercept differences Slope differences

Power �R2 Power �R2

100 .85 .85 .30 .75 .34 .60 .571 .036 .096 .003
100 .85 .85 .30 1.00 .46 .40 .595 .037 .078 .002
100 .85 .85 .30 1.00 .46 .60 .547 .033 .094 .003
100 .95 .85 .20 .75 .30 .40 .531 .033 .068 .001
100 .95 .85 .20 .75 .30 .60 .457 .027 .078 .002
100 .95 .85 .20 1.00 .40 .40 .463 .027 .070 .001
100 .95 .85 .20 1.00 .40 .60 .418 .023 .076 .002
100 .95 .85 .30 .75 .34 .40 .594 .038 .086 .003
100 .95 .85 .30 .75 .34 .60 .510 .030 .109 .004
100 .95 .85 .30 1.00 .46 .40 .510 .029 .086 .002
100 .95 .85 .30 1.00 .46 .60 .448 .025 .106 .003
500 .85 .85 .20 .75 .30 .40 .998 .038 .142 .001
500 .85 .85 .20 .75 .30 .60 .993 .032 .188 .002
500 .85 .85 .20 1.00 .40 .40 .995 .033 .136 .001
500 .85 .85 .20 1.00 .40 .60 .992 .030 .177 .002
500 .85 .85 .30 .75 .34 .40 .999 .043 .227 .002
500 .85 .85 .30 .75 .34 .60 .998 .036 .288 .003
500 .85 .85 .30 1.00 .46 .40 .999 .036 .212 .002
500 .85 .85 .30 1.00 .46 .60 .995 .032 .273 .003
500 .95 .85 .20 .75 .30 .40 .996 .033 .169 .002
500 .95 .85 .20 .75 .30 .60 .987 .027 .213 .002
500 .95 .85 .20 1.00 .40 .40 .990 .027 .161 .001
500 .95 .85 .20 1.00 .40 .60 .977 .023 .202 .002
500 .95 .85 .30 .75 .34 .40 .998 .037 .256 .003
500 .95 .85 .30 .75 .34 .60 .994 .030 .326 .004
500 .95 .85 .30 1.00 .46 .40 .994 .029 .243 .002
500 .95 .85 .30 1.00 .46 .60 .986 .024 .310 .003

1,000 .85 .85 .20 .75 .30 .40 1.000 .038 .244 .001
1,000 .85 .85 .20 .75 .30 .60 1.000 .032 .311 .002
1,000 .85 .85 .20 1.00 .40 .40 1.000 .033 .232 .001
1,000 .85 .85 .20 1.00 .40 .60 1.000 .030 .291 .002
1,000 .85 .85 .30 .75 .34 .40 1.000 .043 .416 .002
1,000 .85 .85 .30 .75 .34 .60 1.000 .036 .510 .003
1,000 .85 .85 .30 1.00 .46 .40 1.000 .036 .388 .002
1,000 .85 .85 .30 1.00 .46 .60 1.000 .033 .485 .003
1,000 .95 .85 .20 .75 .30 .40 1.000 .033 .270 .001
1,000 .95 .85 .20 .75 .30 .60 1.000 .027 .355 .002
1,000 .95 .85 .20 1.00 .40 .40 1.000 .027 .262 .001
1,000 .95 .85 .20 1.00 .40 .60 1.000 .023 .338 .002
1,000 .95 .85 .30 .75 .34 .40 1.000 .037 .467 .003
1,000 .95 .85 .30 .75 .34 .60 1.000 .030 .576 .004
1,000 .95 .85 .30 1.00 .46 .40 1.000 .028 .447 .002
1,000 .95 .85 .30 1.00 .46 .60 1.000 .025 .549 .003

M

533 .90 .85 .25 .875 .375 .50 .840 .032 .229 .002

Part 3 (��2 � .03)

100 .85 .85 .20 .75 .30 .40 .733 .053 .071 .002
100 .85 .85 .20 .75 .30 .60 .662 .044 .078 .002
100 .85 .85 .20 1.00 .40 .40 .689 .046 .070 .002
100 .85 .85 .20 1.00 .40 .60 .643 .041 .077 .002
100 .85 .85 .30 .75 .34 .40 .793 .060 .092 .003
100 .85 .85 .30 .75 .34 .60 .725 .050 .115 .004
100 .85 .85 .30 1.00 .46 .40 .738 .050 .087 .003
100 .85 .85 .30 1.00 .46 .60 .692 .044 .111 .004
100 .95 .85 .20 .75 .30 .40 .693 .047 .084 .002
100 .95 .85 .20 .75 .30 .60 .616 .038 .089 .003
100 .95 .85 .20 1.00 .40 .40 .620 .038 .082 .002
100 .95 .85 .20 1.00 .40 .60 .554 .032 .087 .002
100 .95 .85 .30 .75 .34 .40 .754 .053 .106 .004
100 .95 .85 .30 .75 .34 .60 .671 .043 .133 .005

(table continues)
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Table 6 (continued )

N �XX �yy p �1x 	 �0x �xg RR

Intercept differences Slope differences

Power �R2 Power �R2

100 .95 .85 .30 1.00 .46 .40 .654 .040 .101 .003
100 .95 .85 .30 1.00 .46 .60 .600 .034 .128 .004
500 .85 .85 .20 .75 .30 .40 1.000 .053 .195 .002
500 .85 .85 .20 .75 .30 .60 1.000 .045 .239 .002
500 .85 .85 .20 1.00 .40 .40 1.000 .046 .181 .002
500 .85 .85 .20 1.00 .40 .60 .999 .041 .225 .002
500 .85 .85 .30 .75 .34 .40 1.000 .060 .324 .003
500 .85 .85 .30 .75 .34 .60 1.000 .050 .414 .004
500 .85 .85 .30 1.00 .46 .40 1.000 .049 .301 .003
500 .85 .85 .30 1.00 .46 .60 1.000 .044 .389 .004
500 .95 .85 .20 .75 .30 .40 .999 .047 .222 .002
500 .95 .85 .20 .75 .30 .60 .999 .039 .269 .003
500 .95 .85 .20 1.00 .40 .40 .999 .038 .209 .002
500 .95 .85 .20 1.00 .40 .60 .998 .033 .255 .002
500 .95 .85 .30 .75 .34 .40 1.000 .053 .372 .004
500 .95 .85 .30 .75 .34 .60 1.000 .043 .474 .005
500 .95 .85 .30 1.00 .46 .40 1.000 .040 .353 .003
500 .95 .85 .30 1.00 .46 .60 .999 .035 .458 .005

1,000 .85 .85 .20 .75 .30 .40 1.000 .052 .332 .002
1,000 .85 .85 .20 .75 .30 .60 1.000 .045 .432 .002
1,000 .85 .85 .20 1.00 .40 .40 1.000 .046 .312 .002
1,000 .85 .85 .20 1.00 .40 .60 1.000 .041 .406 .002
1,000 .85 .85 .30 .75 .34 .40 1.000 .060 .550 .003
1,000 .85 .85 .30 .75 .34 .60 1.000 .050 .693 .004
1,000 .85 .85 .30 1.00 .46 .40 1.000 .049 .519 .003
1,000 .85 .85 .30 1.00 .46 .60 1.000 .044 .659 .004
1,000 .95 .85 .20 .75 .30 .40 1.000 .046 .384 .002
1,000 .95 .85 .20 .75 .30 .60 1.000 .039 .497 .003
1,000 .95 .85 .20 1.00 .40 .40 1.000 .037 .362 .002
1,000 .95 .85 .20 1.00 .40 .60 1.000 .033 .472 .002
1,000 .95 .85 .30 .75 .34 .40 1.000 .053 .624 .004
1,000 .95 .85 .30 .75 .34 .60 1.000 .043 .762 .005
1,000 .95 .85 .30 1.00 .46 .40 1.000 .040 .599 .003
1,000 .95 .85 .30 1.00 .46 .60 1.000 .034 .738 .005

M

533 .90 .85 .25 .875 .375 .50 .892 .045 .307 .003

Part 4 (��2 � .04)

100 .85 .85 .20 .75 .30 .40 .826 .065 .086 .002
100 .85 .85 .20 .75 .30 .60 .769 .055 .092 .003
100 .85 .85 .20 1.00 .40 .40 .787 .056 .083 .002
100 .85 .85 .20 1.00 .40 .60 .744 .050 .089 .003
100 .85 .85 .30 .75 .34 .40 .878 .074 .118 .004
100 .85 .85 .30 .75 .34 .60 .823 .062 .136 .005
100 .85 .85 .30 1.00 .46 .40 .828 .060 .114 .004
100 .85 .85 .30 1.00 .46 .60 .784 .054 .129 .005
100 .95 .85 .20 .75 .30 .40 .799 .059 .091 .003
100 .95 .85 .20 .75 .30 .60 .729 .048 .108 .003
100 .95 .85 .20 1.00 .40 .40 .732 .047 .090 .002
100 .95 .85 .20 1.00 .40 .60 .668 .040 .101 .003
100 .95 .85 .30 .75 .34 .40 .855 .066 .135 .005
100 .95 .85 .30 .75 .34 .60 .777 .054 .165 .006
100 .95 .85 .30 1.00 .46 .40 .768 .050 .126 .004
100 .95 .85 .30 1.00 .46 .60 .701 .043 .155 .006
500 .85 .85 .20 .75 .30 .40 1.000 .066 .249 .002
500 .85 .85 .20 .75 .30 .60 1.000 .057 .316 .003
500 .85 .85 .20 1.00 .40 .40 1.000 .057 .238 .002
500 .85 .85 .20 1.00 .40 .60 1.000 .052 .295 .003
500 .85 .85 .30 .75 .34 .40 1.000 .075 .421 .004
500 .85 .85 .30 .75 .34 .60 1.000 .063 .529 .006
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total sample size is .30, and the difference between majority and
minority predictor scores is .50 SD units. Across all design cells in
our simulation, mean �Rintercept

2 � .11, which is 69% larger than
its population counterpart. As a related analysis, we selected the
122,500 cells in our design for which there is no true intercept-
based bias in the population (i.e., ��intercept

2 � 0). If intercept-
based test bias assessment is accurate, the resulting Type I error
rates should be close to the .05 nominal value. However, the
average Type I error rate for these cells is .09. These results
indicate that differences based on intercepts across groups are
overestimated and, under conditions simulated in our study,
Type I error rates are also inflated, suggesting that researchers
are likely to reach the conclusion that differences exist favoring
minority group members when these differences actually do not
exist.

Tables 3–6 provide additional evidence in support of the con-
clusion that intercept-based differences favoring minority group
members are overestimated in many situations. For example, con-
sider results in Table 3. This table includes values for total sample
size of 300 or 400, reliabilities for tests scores and the criterion of
.80 or .85, proportion of minority group members to total sample
size of .20 or .30, average difference of .50 SD units between
majority and minority test scores, range restriction of .30 or .40,
and correlation between test scores and ethnicity of .20 or .23.
Across all conditions for which there is intercept-based test bias of

��intercept
2 � .01, the estimated sample-based �Rintercept

2 is .026. This
means that, based on the sample results, one concludes that test bias
is more than 2.5 times larger than it actually is in the population of
scores. Also, across all values in Table 3, when ��intercept

2 � .02, its
sample-based counterpart is �Rintercept

2 � .047, which is also more than
twice as large as its population counterpart. Not surprisingly, given
this large degree of overestimation of the test bias effect, and the
positive relationship between effect size and statistical power, Table 3
also shows that statistical power is .88 for ��intercept

2 � .01 and .988
for ��intercept

2 � .02.
Results shown in Tables 4–6 follow the same pattern. For all

conditions, the sample-based estimates of test bias based on inter-
cept differences across the groups consistently overestimate the
true degree of test bias favoring minority group members in the
population. For example, across all conditions in Table 4 for
which �� intercept

2 � .03, the average �Rintercept
2 � .082, and for

all conditions for which �� intercept
2 � .04, the average

�Rintercept
2 � .108. Similarly, as shown in Table 5, for

�� intercept
2 � .005, the average �Rintercept

2 � .012. For Table 6,
which includes values seen as prototypical in GMA testing, Type
I error rates are inflated and intercept-based bias is overestimated
(favoring the minority group) in a systematic fashion. In Table 6,
Part 1 shows that the sample intercept-based bias is 80% larger
than its population counterpart (i.e., .018 vs. .01), Part 2 shows that
the sample intercept-based bias is 60% larger than its population

Table 6 (continued )

N �XX �yy p �1x 	 �0x �xg RR

Intercept differences Slope differences

Power �R2 Power �R2

500 .85 .85 .30 1.00 .46 .40 1.000 .061 .395 .004
500 .85 .85 .30 1.00 .46 .60 1.000 .055 .501 .005
500 .95 .85 .20 .75 .30 .40 1.000 .060 .294 .003
500 .95 .85 .20 .75 .30 .60 1.000 .050 .368 .004
500 .95 .85 .20 1.00 .40 .40 1.000 .048 .275 .002
500 .95 .85 .20 1.00 .40 .60 1.000 .042 .351 .003
500 .95 .85 .30 .75 .34 .40 1.000 .067 .485 .005
500 .95 .85 .30 .75 .34 .60 1.000 .055 .585 .007
500 .95 .85 .30 1.00 .46 .40 1.000 .050 .465 .004
500 .95 .85 .30 1.00 .46 .60 1.000 .044 .560 .006

1,000 .85 .85 .20 .75 .30 .40 1.000 .067 .436 .002
1,000 .85 .85 .20 .75 .30 .60 1.000 .057 .549 .003
1,000 .85 .85 .20 1.00 .40 .40 1.000 .057 .411 .002
1,000 .85 .85 .20 1.00 .40 .60 1.000 .052 .522 .003
1,000 .85 .85 .30 .75 .34 .40 1.000 .075 .701 .004
1,000 .85 .85 .30 .75 .34 .60 1.000 .064 .827 .006
1,000 .85 .85 .30 1.00 .46 .40 1.000 .061 .665 .004
1,000 .85 .85 .30 1.00 .46 .60 1.000 .055 .796 .005
1,000 .95 .85 .20 .75 .30 .40 1.000 .060 .508 .003
1,000 .95 .85 .20 .75 .30 .60 1.000 .051 .625 .004
1,000 .95 .85 .20 1.00 .40 .40 1.000 .048 .484 .002
1,000 .95 .85 .20 1.00 .40 .60 1.000 .043 .597 .003
1,000 .95 .85 .30 .75 .34 .40 1.000 .067 .776 .005
1,000 .95 .85 .30 .75 .34 .60 1.000 .056 .874 .007
1,000 .95 .85 .30 1.00 .46 .40 1.000 .050 .747 .004
1,000 .95 .85 .30 1.00 .46 .60 1.000 .044 .860 .006

M

533 .90 .85 .25 .875 .375 .50 .926 .056 .386 .004

Note. ��2 � population-based effect size (i.e., test bias); �XX � test reliability; �YY � criterion reliability; p � proportion of minority group sample size
to total sample size; �1x 	 �0x � average standard deviation-unit difference between majority and minority test scores; �XG � correlation between test
scores and moderator G; RR � range restriction; �R2 � sample-based effect size (i.e., test bias) estimate.
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counterpart (i.e., .032 vs. .02), Part 3 shows that the sample
intercept-based bias is 50% larger than its population counterpart
(i.e., .045 vs. .03), and Part 4 shows that the sample intercept-based
bias is 40% larger than it is in the population (i.e., .056 vs. .04).

In sum, the degree of intercept-based test bias is consistently
overestimated given a large range of conditions observed in the
validation research literature. Overall, the smaller the population
effect, the larger the degree of overestimation. For population
effects of ��intercept

2 � .03 or smaller, test bias is believed to be
more than twice as large as it is in actuality. Moreover, when there
is no intercept-based bias in the population, researchers are likely

to conclude incorrectly that bias favoring minority group members
actually exists.

Relative impact of manipulated parameters on Type I error
rates to assess intercept-based test bias. Similar to the regres-
sion analyses described earlier regarding slope-based test bias,
Table 7 shows regression results to clarify the relative impact of
each of the manipulated parameters on the Type I error rates for
assessing intercept-based test bias. In Table 7, the columns labeled
Type I error: Intercept show that the factors that have the largest
impact on Type I error rates are (a) reliability of test scores (� �
–.16), (b) the correlation between test scores and minority status

Table 7
Standardized Models Regressing Type I Error Rates and Statistical Power on Manipulated
Parameters for Intercept-Based and Slope-Based Test Bias Assessment

Parameter

Type I errora Powerb

Intercept Slope Intercept Slope

��2 .242 .514
N .097 	.001 .195 .427
�XX 	.157 .000 	.025 .109
�YY .023 .000, ns .039 .097
p 	.034 .000, ns .024 .272
�1x 	 �0x .084 .000, ns 	.018 	.275
RR .022 .000 	.083 .314
�XG .117 .000, ns .036 .409
��2 � N 	.214 .034
��2 � �XX .030 .009
��2 � �YY 	.039 .009
��2 � p 	.051 .040
��2 � (�1x 	 �0x) 	.023 	.012
��2 � RR .086 .006
��2 � �XG .019 .013
N � �XX 	.087 .000 .014 	.003
N � �YY .013 .000 	.032 	.002
N � p 	.008 .000 	.037 .021
N � (�1x 	 �0x) .037 .000, ns 	.006 	.009
N � RR .010 .000 .068 	.004
N � �XG .068 .000, ns .013 .011
�XX � �YY 	.021 .000, ns .004 .003
�XX � p .014 .000, ns 	.002 	.011
�XX � (�1x 	 �0x) 	.058 .000, ns 	.031 	.001, ns
�XX � RR 	.018 .000 	.013 	.006
�XX � �XG 	.115 .000, ns .002 .007
�YY � p 	.002 .000 	.007 	.001
�YY � (�1x 	 �0x) .010 .000, ns 	.001, ns 	.002
�YY � RR .002 .000, ns .014 	.005
�YY � �XG .016 .000, ns .003 .003
p � RR 	.005 .000 	.008 	.003
p � �XG 	.039 .000 	.015 	.180
(�1x 	 �0x) � RR .002, ns .000, ns .021 	.004
(�1x 	 �0x) � �XG .066 .000, ns 	.014 	.009
RR � �XG .028 .000 	.001, ns .005

Note. Intercept � intercept-based test bias; slope � slope-based test bias; ��2 � population-based effect size
(i.e., test bias); RR � range restriction; �XX � test reliability; �YY � criterion reliability; p � proportion of
minority group sample size to total sample size; �1x 	 �0x � average standard deviation-unit difference between
majority and minority test scores; �XG � correlation between test scores and demographic variable (G was coded
using 1 for the majority group and 0 for the minority group).
a The regression models using Type I error rates as the criterion were computed using the 122,500 cells in the
design for which test bias does not exist in the population (i.e., ��2 � 0), so there is no variance in this
variable. b The regression models using statistical power as the criterion were computed using the 3,062,500
cells in the design for which test bias exists in the population. The coefficient for p � (�1x 	 �0x) was not
derived due to collinearity with p � �XG. For all regression coefficients, p � .01, except for those denoted as
ns (i.e., statistically nonsignificant, p � .05).
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(� � .12), and (c) total sample size (� � .10). Each of these effects
is in the predicted direction such that Type I error rates increase
with lower test score reliability, a larger difference in mean test
scores between groups favoring majority group members, and a
larger total sample size.

An issue that has not yet been reported in the literature is
whether the parameters we manipulated in the simulation have
interactive effects on Type I error rates when assessing possible
intercept-based test bias. Table 7 also shows that all but one
two-way interaction was statistically significant. The model in-
cluding first-order effects only resulted in R2 � .50, and the
addition of the two-way terms increased this value to R2 � .86. For
example, the coefficient for �XX � RR is � � –.02, which means
that for a 1 SD unit decrease in RR, the slope of Type I error rates
on test score reliability increases by .02 SD units, holding all other
variables in the model constant. Recall that a range restriction
value of 1.00 means all scores are retained, whereas a range
restriction value of .10 means only 10% of scores are retained. So,
this two-way interaction effect indicates that the positive effect of
test score unreliability on Type I error rates is amplified as selec-
tivity increases.

Results in Table 7 also indicate that test score reliability and test
score differences produce an upward bias in the Type I error rates
for the intercept-differences test. Moreover, test score reliability
and test score differences across groups interact with each other
(i.e., �XX � [�1x 	 �0x]) as well as with other parameters in
producing an upward bias in Type I error rates. For example, test
score reliability interacts with proportion of minority members to
total sample size, range restriction (as noted above), and criterion
score reliability; and mean test score differences across groups
interact with total sample size and reliability of criterion scores.
All of these two-way interactions were in the expected direction
such that the negative effect of test score reliability and the
positive effect of test score differences across groups on Type I
error rates are amplified as values for the other parameters in-
crease.

In sum, results included in Tables 3–6 indicate that intercept-
based test bias is likely to be overestimated under a large range of
conditions of total sample size, range restriction, predictor and
criterion scores reliability, proportion of minority group sample
size to total sample size, and differences between test scores across
groups that are frequently observed in the preemployment testing
literature. In fact, these results indicate that intercept-based test
bias favoring minority group members could be found even when
bias does not exist in the population.

Comparison of Relative Accuracy of Intercept-Based
and Slope-Based Test Bias Assessment

Results reported in Table 7 provide comparative information
regarding the relative impact of methodological and statistical
artifacts on the accuracy of slope-based and intercept-based test
bias assessment. First, a perusal of Type I error rates suggests that
when no bias exists in the population, the manipulated parameters
have very little impact on the accuracy of the slope-based test. Of
all of the regression coefficients (see columns labeled Type I error:
Slope), the largest absolute value is .001 and four are statistically
nonsignificant. On the other hand, however, Type I error rates for
intercept-based bias assessment (see columns labeled Type I error:

Intercept) are affected by the methodological and statistical arti-
facts we manipulated: Each of the first-order effects is statistically
significant, and all but one of the two-way interaction effects is
statistically significant and regression weights are as large as �.16�
(for test score reliability) and �.12� (for correlation between test
scores and minority status).

A perusal of results regarding statistical power suggests that
methodological and statistical artifacts have a stronger effect on
the power of the slope-based test compared to the intercept-based
test. The average of the absolute value of the first-order regression
coefficients for the slope-based test (column labeled Power: Slope)
is .30, whereas the same average for the first-order effects predict-
ing power for intercept-based test bias is .08. In other words, the
impact of the parameters we manipulated on power is 3.75 times
larger for the slope-based test compared to the intercept test.

Figure 2 includes a graphic representation of the effects of true
population test bias, total sample size, range restriction, and mi-
nority group proportion on the statistical power to detect test bias
when bias exists in the population. Each of the four panels in this
figure illustrates the result that methodological and statistical ar-
tifacts have a more detrimental effect on the power of the slope test
compared to the intercept test. Figure 2A shows that, across values
of all other parameters, the intercept test reaches power of .90
when ��intercept

2 � .02, whereas the slope test does not reach
power of .80 when ��slope

2 � .15. Similarly, Figure 2B shows
that the intercept test reaches power of .90 when total sample size
is � 200, but the slope test does not reach power of .80 when total
sample size is 1,000. Figure 2A also illustrates that more stringent
range restriction actually increases the power of the intercept test
in the presence of slope-based differences. On the other hand, as
has been shown in previous research, more severe range restriction
decreases the power of the slope test (Aguinis & Stone-Romero,
1997). Lastly, Figure 2C illustrates that as the proportion of
minority group sample size to total sample size approaches .5,
power improves for both the intercept and the slope test. However,
deviations from the .5 value have a more detrimental impact on the
power of the slope test compared to the intercept test, as is the case
with the other methodological and statistical artifacts.

Figure 3 includes graphic displays of the effects of test score
reliability, minority group proportion, group mean differences
regarding test scores, and total sample size on Type I error rates for
the 122,500 cells in our design for which bias does not exist in the
population (i.e., ��2 � 0 for both the intercept and the slope
effect). Each of the four panels illustrates the result that method-
ological and statistical artifacts have an effect on the Type I error
rates for the intercept test but not the slope test. For each of the
four panels, Type I error rates remain close to the nominal value of
.05 for the slope test regardless of the value of the manipulated
parameters. In sharp contrast, Type I error rates for the intercept
test deviate substantially from the nominal .05 value as parameters
take on values frequently observed in human resource selection
research and practice. For example, Figure 3A shows that when
test score reliability is about .80, Type I error rate is about .10;
Figure 3B shows that when minority group proportion is about .3,
Type I error rate is about .10; and Figure 3C shows that when test
score differences between groups is 1.0, Type I error rate is about
.15. Figure 3A illustrates the phenomenon for which we provided
a new analytic proof in the introduction. That is, Type I error rates
for the intercept test remain at the nominal level when test score
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reliability is perfect. However, as measurement error is introduced
in the test scores, Type I error rates increase leading to the
incorrect conclusion that there is intercept-based bias favoring
members of the minority group.

In sum, a comparison of the relative accuracy of intercept-based
and slope-based test bias assessment indicates that the intercept-
based test is more susceptible to inflation of Type I error rates (i.e.,
concluding there is bias when it does not exist or overestimating
the presence of test bias) compared to the slope-based test. Alter-
natively, the slope-based test is more susceptible to the detrimental
impact of methodological and statistical artifacts on statistical
power (i.e., concluding there is no bias when it actually exists in
the population) compared to the intercept-based test.

Additional Monte Carlo Simulation

As noted earlier, our analytic work in Appendix B explaining
the mechanisms through which test score unreliability, differences
in mean test scores between groups, and range restriction affect
Type I error rates of intercept-based bias assessment assumes there
is no slope-based bias. We conducted an additional simulation to

show how range restriction and slope-based differences across
groups affect results of the intercept-based test. For this additional
Monte Carlo study, we generated data using the same approach
described in the Method section for the main simulation with the
exception that we set ��intercept

2 � 0, and for all but 16 design
cells we set ��slope

2 � 0. Additionally, we included values of
�XX � .90 and .95, �YY � .90 and .95, p � .2, and range restriction
of .40 and .60 for Ns of 250 and 1,000. Results are shown in
Table 8.

In addition to conducting this second simulation, we used Equa-
tion 4 to estimate the degree of intercept-based bias analytically
when ��slope

2 � 0. Results are also included in Table 8. The
columns labeled Accuracy of analytic estimates show the differ-
ence between the simulation-generated and analytically derived
sample-based �Rintercept

2 and the difference between the simulation-
generated and analytically derived associated Type I error rate for
the null hypothesis ��intercept

2 � 0.
Results reported in Table 8 lead to two conclusions. First,

Lines 1– 8 show that, when true slope-based differences are
zero, Type I error rates for a situation when intercept-based

Figure 2. Relationships between statistical power to detect test bias and population test bias (Panel A), total
sample size (Panel B), range restriction (Panel C), and minority group proportion (Panel D) based on the
3,062,500 design cells for which population test bias exists (i.e., ��2 � 0).
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differences are zero can be inflated but are not greater than
.082. However, the remaining entries in this table show that as
true slope-based differences range from ��2 � .02 to .04,
which are still small values but fairly typical (Aguinis et al.,
2005; McClelland & Judd, 1993), Type I error rates reach
values as high as in the .80s, although there is a zero intercept-
based difference across groups in the population. Consistent
with this result, the sample-based test-bias effect is always
positive for each condition, even though the true intercept-
based test bias is zero in the population.

A second result worth noting from Table 8 is that Lines 1–8
show that the Type I error rates estimated using the analytic
solution described in Appendix B are virtually identical to those
derived from the simulation when slope-based bias does not exist
in the population (which is an assumption of the analytic approx-
imation). The columns labeled �(�R2) show the difference be-
tween simulation-generated and analytically derived intercept-
based test bias. Across the 16 design cells included in Lines 1–8
in Table 8, the average difference between these values is only
.000475. The columns labeled �(Prob.) show the difference be-
tween simulation-generated and analytically derived Type I error
rates. Across the 16 design cells in Lines 1–8 in Table 8, the
average of the absolute differences between these values is only
.004.

Discussion

The goal of the present study was to revisit established conclu-
sions regarding test bias in preemployment testing and provide an
alternative explanation for the consistent results reported over the
past 40 years of research. As noted in the Principles for the
Validation and Use of Personnel Selection Procedures,

predictive bias has been examined extensively in the cognitive ability
domain. For White–African American and White–Hispanic compari-
sons, slope differences are rarely found; while intercept differences
are not uncommon, they typically take the form of overprediction of
minority group performance. (SIOP, 2003, p. 32)

In spite of these established conclusions, there are several reasons
why slope-based bias may actually exist and why intercept-based
bias favoring minority group members may be smaller than it is
believed to be or not exist at all. Regarding the finding that no
differences in slopes exist, Monte Carlo simulations and literature
reviews have revealed that conclusions regarding the absence of
slope differences across groups may not be warranted. More pre-
cisely, statistical power is typically inadequate. From a substantive
standpoint, slope-based test bias is expected as a result of
sociohistorical–cultural and social psychological explanations.
Regarding intercept-based bias, we provide new analytic proof that

Figure 3. Relationships between Type I error rate and test score reliability (Panel A), minority group
proportion (Panel B), group mean differences regarding test scores (Panel C), and total sample size (Panel D)
based on the 122,500 design cells for which there is no test bias in the population (i.e., ��2 � 0).
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researchers are more likely to find that performance is overpre-
dicted for members of the minority group when the mean minority
group test score is lower than the mean majority group test score and
test scores are measured with less-than-perfect reliability. Both of
these are conditions typically observed in human resource selection
research and practice, particularly in the area of GMA testing.

We conducted a Monte Carlo simulation that generated 15
billion 925 million individual samples in 3,185,000 unique design
cells. We chose to implement this type of comprehensive design to
study test bias because, as noted by Linn (1978) more than 30

years ago, “the stakes are high, and the underlying issues are
extremely emotional ones” (p. 507). Much like meta-analysis has
changed our views on the validity of various selection tools
(Schmidt & Hunter, 1998), Monte Carlo methodology is a tool that
allows researchers to raise important questions about their current
understanding of test bias in human resource selection.

If true slope-based differences exist and true intercept-based
differences do not exist, our results suggest that researchers could
make one or both of the following incorrect conclusions: (a) There
is no slope-based test bias and (b) there is intercept-based test bias

Table 8
Simulation Results for the Effects of Sample Size, Slope Differences, Criterion and Predictor Reliability, and Range Restriction on
Type I Errors for Intercept-Based Test Bias Assessment

N ��2 �YY RR

�XX � .90 �XX � .95

Intercept-based
differences

Accuracy of analytic
estimates

Intercept-based
differences

Accuracy of analytic
estimates

�R2 Prob. �(�R2) �(Prob.) �R2 Prob. �(�R2) �(Prob.)

250 .00 .80 .40 .0040 .058 .0008 .0020 .0038 .052 .0008 .0010
250 .00 .80 .60 .0039 .056 .0008 	.0020 .0037 .056 .0008 .0040
250 .00 .90 .40 .0039 .056 .0007 	.0010 .0036 .047 .0006 	.0050
250 .00 .90 .60 .0038 .049 .0007 	.0100 .0038 .058 .0010 .0060

1,000 .00 .80 .40 .0012 .079 .0003 .0050 .0009 .049 .0001 	.0070
1,000 .00 .80 .60 .0012 .082 .0002 	.0010 .0010 .053 .0002 	.0050
1,000 .00 .90 .40 .0011 .072 .0001 	.0060 .0010 .057 .0002 .0000
1,000 .00 .90 .60 .0012 .081 .0002 	.0070 .0009 .057 .0001 	.0020

250 .01 .80 .40 .0058 .115 .0055 .107
250 .01 .80 .60 .0046 .081 .0042 .067
250 .01 .90 .40 .0059 .114 .0057 .118
250 .01 .90 .60 .0047 .085 .0043 .074

1,000 .01 .80 .40 .0032 .349 .0027 .283
1,000 .01 .80 .60 .0019 .188 .0016 .138
1,000 .01 .90 .40 .0035 .388 .0030 .335
1,000 .01 .90 .60 .0021 .209 .0017 .161

250 .02 .80 .40 .0073 .170 .0068 .156
250 .02 .80 .60 .0051 .100 .0046 .084
250 .02 .90 .40 .0077 .186 .0073 .169
250 .02 .90 .60 .0051 .096 .0048 .091

1,000 .02 .80 .40 .0045 .505 .0042 .477
1,000 .02 .80 .60 .0023 .242 .0020 .209
1,000 .02 .90 .40 .0051 .587 .0046 .527
1,000 .02 .90 .60 .0026 .283 .0021 .216

250 .03 .80 .40 .0088 .220 .0081 .193
250 .03 .80 .60 .0056 .112 .0053 .109
250 .03 .90 .40 .0094 .241 .0089 .227
250 .03 .90 .60 .0058 .121 .0052 .110

1,000 .03 .80 .40 .0060 .656 .0056 .616
1,000 .03 .80 .60 .0028 .309 .0024 .252
1,000 .03 .90 .40 .0067 .709 .0063 .679
1,000 .03 .90 .60 .0030 .339 .0026 .286

250 .04 .80 .40 .0103 .275 .0097 .247
250 .04 .80 .60 .0059 .123 .0056 .118
250 .04 .90 .40 .0111 .298 .0104 .279
250 .04 .90 .60 .0063 .142 .0057 .129

1,000 .04 .80 .40 .0076 .763 .0071 .736
1,000 .04 .80 .60 .0032 .369 .0029 .324
1,000 .04 .90 .40 .0084 .823 .0080 .801
1,000 .04 .90 .60 .0035 .408 .0031 .359

Note. The results are based upon 5,000 replications. The simulation was based upon p � .2, �1x 	 �0x � 1.0, and �XY � .5. ��2 � population-based
effect size for slope (i.e., test bias); �YY � criterion reliability; RR � range restriction; �R2 � sample-based effect size; Prob. � probability of statistically
significant finding (i.e., Type I errors when ��2 � 0 and statistical power when ��2 � 0); �(�R2) � difference between effects from the Monte Carlo
simulation and estimates derived using the analytic solution in Appendix B; �(Prob.) � difference between simulated Type I errors and analytically derived
estimate.
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favoring minority group members. Thus, our study provides an
alternative explanation for the established conclusion in I/O psy-
chology and human resource management that test bias is nonex-
istent and, if it exists, it occurs regarding intercept-based differ-
ences only. Specifically, our results suggest that the presence of
methodological and statistical artifacts that are typically ob-
served in human resource selection is a likely explanation for
the consistent results obtained over the past 40 years of test-bias
research.

Implications for Research and Practice

One important implication of our study is that, although ironic,
it seems that for the past 40 years researchers have been trying to
assess potential test bias with a biased procedure (Terris, 1997).
Regarding the slope-based test, our results demonstrate that statis-
tical power is consistently below the .80 standard (cf. J. Cohen,
1988). In other words, researchers are not likely to find slope-
based test bias if it exists in the population. Although our intro-
duction described several reasons why slope-based bias may exist,
we do not know for certain that it does. However, what the present
study demonstrates is that if slope-based bias does exist, it is very
difficult if not impossible to detect in many human resource
selection research contexts. Thus, it is likely that much past re-
search has attempted to test the null hypothesis (i.e., no slope-
based bias) using samples, measures, and research designs that had
a very small chance of detecting bias if it existed. Our results are
therefore not necessarily at odds with previous research because,
for the most part, previous research has not adequately tested the
slope-based bias hypothesis. Just like individual studies with
flawed designs are not able to test the situational specificity
hypothesis, individual studies with insufficient statistical power
cannot test the differential prediction hypothesis either. This is
because “studies into differential prediction that have been carried
out up to now have shown some methodological weaknesses, such
as small sample size, restriction of range, unreliability of assess-
ment, and limited criteria” (Te Nijenhuis & Van der Flier, 1999,
p. 172).

As early as the mid-1970s, Katzell and Dyer (1977) noted that
it would be impossible to answer the question of differential
validity and differential prediction unequivocally unless a rigorous
test of the null hypothesis is conducted. At minimum, such a test
would require the use of random samples of members from each of
the groups under consideration and samples should be sufficiently
large, measures sufficiently reliable, and so forth, so that statistical
power to detect differential prediction is at least .80 (cf. J. Cohen,
1988). Our simulation, as well as the study by Aguinis and Stone-
Romero (1997), indicates that these and other design and measure-
ment issues have interactive effects on statistical power. Thus, one
recommendation is to conduct a power analysis prior to data
collection to make sure power will be sufficient to detect slope-
based differences (if they exist). There are computer programs
available online to conduct such a power analysis. These programs
allow users to input information on several design and measure-
ment issues such as anticipated total sample size, anticipated
sample size in each subgroup, reliability for test and criterion
scores, and anticipated range restriction (if any; see Aguinis,
2004a, for detailed descriptions and instructions on how to use
each of these programs). In terms of selecting a targeted effect size

for the power analysis, this choice can be facilitated using the
Aguinis and Smith (2007) online calculator, which allows users to
estimate false positives and false negatives associated with using a
common regression line in the presence of slope-based test bias.
Thus, one could use the Aguinis and Smith (2007) calculator to
choose the effect size that leads to the largest, yet tolerable,
amount of false positives and false negatives. Following these
procedures, users would know they have statistical power to detect
an effect size that is sufficiently large to be meaningful from a
practical standpoint. From an ethical standpoint, some would argue
that even if one person is misclassified due to test bias, then the test
should not be used. So, this position suggests that an effect size
leading to at least one individual being a false positive or false
negative would be meaningful. Accordingly, the decision regard-
ing what targeted effect size to use in the power analysis is
subjective and should be made within each specific context (Agui-
nis et al., 2009). As noted by Sackett, De Corte, and Lievens
(2009) in the context of the trade-off between validity and adverse
impact,

These decision aids do not tell the user what they should do as that is
a matter of values . . . and not a technical issue. A trade-off that seems
reasonable to some will be seen as inappropriate by others. (p. 469)

Regarding intercept-based bias, our analytic and empirical re-
sults demonstrate that differences favoring minority group mem-
bers are likely to be found when they do not exist. Also, when they
exist in the population, they are likely to be exaggerated in the
samples. As expected based on the new analytic proof in Appendix
B, as differences regarding mean test scores between the groups
increase and test score reliability decreases, Type I error rates
indicating that there are intercept-based differences favoring mi-
nority group members also increase. Thus, for many conditions in
preemployment testing, one could conclude that there is intercept-
based bias favoring minority group members when this is not true.
Also, one could conclude that differences are larger than they are
in actuality. We offer two suggestions to potentially remedy this
situation: Improve test score reliability and decrease test score
differences across groups. First, regarding the improvement of
reliability, recent developments regarding researchers’ understand-
ing of various sources of measurement error (Schmidt, Le, & Ilies,
2003) have the potential to provide guidelines on how to improve
the reliability of preemployment tests. Second, recent develop-
ments regarding how to decrease adverse impact by implementing
interventions before, during, and after data collection (Outtz, 2009)
can be fruitful in terms of decreasing mean test score differences
across groups and, hence, improving the accuracy of intercept-
based bias assessment.

As noted by Kehoe (2002), “a critical part of the dilemma is that
GMA-based tests are generally regarded as unbiased” (p. 104). If
test bias does not exist, then adverse impact against ethnic minor-
ities is a defensible position that has formidable social conse-
quences, and the field will continue to try to solve what seems to
be an impossible dilemma between validity and adverse impact
(Aguinis, 2004b; Ployhart & Holtz, 2008). A finding that tests are
biased would create potential problems for all of the parties in-
volved in preemployment testing research and practice because
researchers would have to rethink how they design and implement
preemployment tests. Given the science–practice disconnect in I/O
psychology and human resource management (Cascio & Aguinis,
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2008a), reviving the issue of test bias may provide a great oppor-
tunity for I/O psychology and management researchers to respond
to society’s need and interest in fairness in preemployment testing.
It may provide an opportunity to change how I/O psychology and
management research influences practice given that, to this point,
“bias scholars have failed as influencers of social policy” (Cole,
1981, p. 1075). In other words, “considerably more thought and
effort than have previously been the case should be devoted to the
ingredients of test validation research; otherwise, the stream of
excuses usually associated with unrewarding outcomes will con-
tinue” (Gael, Grant, & Ritchie, 1975, p. 411).

We have focused on test bias regarding groups based on eth-
nicity classifications primarily in the context of GMA testing
because there is a voluminous literature related to these specific
groups and type of preemployment testing. However, our results
are also applicable when comparisons are based on gender instead
of ethnicity and in the context of other types of preemployment
tests (e.g., personality; Cortina et al., 1992). For example, Saad and
Sackett (2002) examined possible gender-based differential pre-
diction using personality tests and found that slope differences
existed in only 5% of cases (i.e., a result that can be explained by
chance alone), but some intercept-based differences were found
favoring women. As a second illustration addressing a different
type of preemployment test, Te Nijenhuis and Van der Flier (2004)
explored possible differential prediction for majority and minority
ethnic groups regarding safety suitability. Safety suitability is a
multidimensional construct including a combination of cognitive
functioning, attention functions, perceptual-motor abilities, and
personality. Results suggested that there was no slope-based test
bias.

Limitations and Suggestions for Future Research on
Test-Bias Assessment

Our results are based on simulated data. Hence, although we
made an effort to include a wide range of values for each of the
parameters we included in the simulation, our results are bound by
and hold only for the parameters and values we studied. Our results
therefore point to what could be a plausible alternative explanation
for the established conclusions regarding test bias, at least for the
conclusions derived from studies with parameter values within
the ranges we included in our simulation. Nevertheless, we think
the evidence we provide is sufficiently compelling to lead to a
revival of test bias research in preemployment testing.

To investigate what is actually happening, as opposed to what
could be happening as we did in our study including simulated
data, future researchers could investigate the question of possible
differential prediction meta-analytically. This approach would be
particularly fruitful regarding slope-based bias because meta-
analysis, by virtue of accumulating data from several studies,
would yield greater statistical power than any single study. As is
described in detail in Appendix C, a meta-analytic investigation of
test bias would be possible, but there are four challenges. First,
regression coefficients from primary-level studies must be based
on the same operationalizations of each of the predictors and
criterion in the model. Second, regression coefficients in the
primary-level studies must be computed using the exact same
variables in the model because test bias estimates would change if,
for example, a third predictor (i.e., another preemployment test)

was added in the model (Sackett, Laczo, & Lippe, 2003). Third, to
investigate the differential prediction question in a valid manner,
researchers using meta-analysis would have to correct sample-
based regression coefficients for methodological and statistical
artifacts, but we are not aware of a procedure that would allow for
such a correction in a meaningful manner. Raju, Fralicx, and
Steinhaus (1986) proposed a meta-analytic approach to cumulate
regression coefficients, but this approach is only useful for first-
order effects and, thus, is not applicable for a meta-analysis of
slope-based bias (i.e., meta-analyzing regression coefficients as-
sociated with the product term in our Equation 2). Finally, if
instead of unstandardized regression coefficients, the meta-
analysis cumulates standardized effects (e.g., f 2; Aguinis & Pierce,
2006), one would need information that is typically only reported
in about 20% of published articles (Aguinis et al., 2005).

Taken together, these four challenges may explain why, al-
though researchers have conducted meta-analyses of the differen-
tial validity literature (e.g., Hunter, Schmidt, & Hunter, 1979), we
are not aware of any meta-analysis of the differential prediction
literature published in a peer-reviewed journal. Note that a finding
of lack of differential validity (i.e., different validity coefficients
across groups) does not provide evidence regarding lack of differ-
ential prediction (e.g., different slopes across groups). As high-
lighted by Hartigan and Widgor (1989), “the available reports
comparing validities do not provide direct evidence regarding the
possibility of differential prediction” (p. 178). This is the case
because “equal correlations do not necessarily imply equal stan-
dard errors of estimate, nor do they necessarily imply equal slopes
or intercepts” (Linn, 1978, p. 511). As noted by Bobko and Bartlett
(1978), “a focus on subgroup validity differences distracts atten-
tion from the more global problems of test fairness and differential
prediction” (p. 13). In short, “differences in prediction systems
have a more direct bearing on issues of bias in selection than do
differences in correlations” (Linn, 1978, p. 511).

We acknowledge the existence of large sample research ad-
dressing test bias within the context of college admission testing.
These studies, which are mainly available in the form of technical
reports published by the College Board, share two important
characteristics. First, they address differential prediction in the
context of college admission and not preemployment testing. So,
in each of these studies, the criterion of interest is usually first-year
grade point average (FYGPA), or some other type of grade point
average (GPA; e.g., cumulative GPA). The meta-analytically de-
rived observed correlation between GPA and job performance is
only .16 and no greater than in the .30s when corrected for
methodological and statistical artifacts (Roth, BeVier, Switzer, &
Schippmann, 1996). A corrected correlation of .35 means that
GPA and job performance share 12% of variance at the construct
level and, hence, GPA and job performance do not seem to be
interchangeable criteria (i.e., indicators of the same underlying
latent construct; Binning & Barrett, 1989).

A second characteristic shared by the College Board technical
reports is that they conclude that college admission tests tend to
overpredict observed GPA for African American and Hispanic
students. However, reports do not generally include estimates of
intercept- or slope-based differences across subgroups or any type
of test of statistical significance regarding hypotheses about
intercept- or slope-based test bias. Instead, these reports focus on
over- or underprediction of GPA without specifying whether this is
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due to differences in intercepts, slopes, or both. For example,
Bridgeman, McCamley-Jenkins, and Ervin (2000) conducted a
study to investigate the impact of revisions in the content (and
recentering) of the SAT. Their study included data for the old and
revised versions of the SAT for the 1994 and 1995 entering classes
of 23 colleges. Each of these colleges also provided FYGPA for all
students in the 1994 and 1995 entering classes. Differential pre-
diction was not assessed by examining intercept- or slope-based
differences across subgroups. Instead,

over/underprediction was analyzed by making predictions based on all
students in a college and, then, . . . computing the difference between
the predicted and actual FYGPA (predicted GPA minus actual GPA).
The result is in grade-point units, with positive values indicating
overprediction and negative values indicating underprediction.
(Bridgeman et al., 2000, p. 3)

As a second illustration of the type of differential prediction
analysis reported in College Board reports, Mattern, Patterson,
Shaw, Kobrin, and Barbuti (2008) assessed the impact of changes
made to the SAT (e.g., addition of a writing section). Mattern et al.
analyzed SAT and FYGPA data from 151,316 students from 110
colleges and universities. Similar to Bridgeman et al., Mattern et
al. did not report results regarding intercept- or slope-based test
bias. Instead, they standardized FYPGAs within each institution
and calculated regression equations within each college to assess
the degree of over- or underprediction for each subgroup by using
a common regression line. Next, identical to Bridgeman et al.,
Mattern et al. computed the average residual (i.e., predicted
FYGPA minus observed FYGPA) for each subgroup within each
college and then computed the average degree of over- or under-
prediction across all colleges. Also similar to Bridgeman et al.,
Mattern et al. concluded that African American and Hispanic
students’ FYGPA tends to be overpredicted. Examples of addi-
tional large sample size college admission testing reports follow-
ing precisely the same procedure and reaching similar conclusions
include Camara (2008) and Ramist, Lewis, and McCamley Jenkins
(1994), among others. In short, these technical reports do not
include information pertaining to slope-based differences across
ethnicity-based subgroups, the size of such slope-based differ-
ences, or the statistical significance test for the null hypothesis of
no slope-based test bias.

Although the College Board reports use GPA instead of job
performance as the criterion and do not generally report informa-
tion regarding intercept- or slope-based test bias, they do lead to
the consistent conclusion that college admission tests overpredict
grades for African American and Hispanic students. However, as
noted by Young (2001), “it is accurate to say that the causes of this
phenomenon are not yet completely known or understood” (p. 18).
Thus, as implied by Young, there is a need for further test-bias
research to understand whether, and when, test bias occurs, as well
as the reasons why it occurs if it does.

Regarding additional specific suggestions for future research,
we doubt that using alternative existing test-bias models will be
fruitful. The Cleary (1968) model has prevailed in spite of the
many competitors proposed (e.g., Schmidt & Hunter, 1974). The
Cleary model has been accepted by researchers, professional or-
ganizations, and the legal system. Moreover,

there seem to be no commonly accepted alternatives to the statistical
approaches for instigating such [test bias] investigations. Yet what is

even more distressing than the lack of explicit alternatives is an
apparent inability of psychologists and psychometricians to articulate
the relevant issues as they affect test takers from various racial and
ethnic groups within the United States. (Helms, 1992, p. 1090)

Accordingly, we recommend a two-pronged approach. First, as
suggested by Van Iddekinge and Ployhart (2008), future test bias
assessments should “use power analysis to determine sample size
required to draw valid inferences regarding differential prediction,
and report the actual level of power for all relevant analyses” (p.
893). Van Iddekinge and Ployhart (Table 1, p. 914) summarized
several suggestions and resources available to conduct such a
power analysis. However, sample size is only one of several
factors that have a detrimental effect on statistical power, so power
calculations should include several additional factors (e.g., sample
sizes across groups, measurement error, and so forth; Aguinis et
al., 2001).

In addition, following Helms’s (1992) recommendation, we
suggest a new approach to human resource selection that examines
how members of various groups are affected by testing and also
approach testing from a different perspective. Specifically, Cascio
and Aguinis (2008b), Ployhart (2006), and Ployhart, Schneider,
and Schmitt (2006) have argued for a change in direction in human
resource selection research including an expanded view of the
staffing process that considers in situ performance and the role of
time and context. In situ performance is the “specification of the
broad range of effects—situational, contextual, strategic, and en-
vironmental—that may affect individual, team, or organizational
performance” (Cascio & Aguinis, 2008b, p. 146). Combining the
concept of in situ performance with a consideration of time and
context and the recommendation offered by Helms is likely to lead
to a better understanding of why and conditions under which “tests
often function differently in one ethnic group population than the
other” (Katzell & Dyer, 1977, p. 143). In other words, combining
these areas of research may provide interesting insights regarding
conditions under which individuals may perceive testing differ-
ently, how these differences may be related to their identity and
cultural backgrounds, and how these perceptions may have an
impact on test scores (cf. Walton & Spencer, 2009) as well as the
relationship between test scores and performance.

Closing Comments

We are aware that we have set a tall-order goal of reviving
research on test bias in preemployment testing in the face of
established conclusions in the fields of I/O psychology, manage-
ment, and others concerned with high-stakes testing. Our results
indicate that the accepted procedure to assess test bias is itself
biased: Slope-based bias is likely to go undetected and intercept-
based bias favoring minority group members is likely to be found
when in fact it does not exist (if slope-based bias exists and
intercept-based bias does not exist in the population). Preemploy-
ment testing is often described as the cradle of the I/O psychology
field (e.g., Landy & Conte, 2007). Accordingly, our study has
important implications for the field as well as ethical, legal, and
organizational implications (Oswald et al., 2000). The present
study creates an important opportunity for I/O psychology and
management researchers to revive the topic of test bias and make
contributions with measurable and important implications for or-
ganizations and society.
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Appendix A

Theorem From Aguinis et al. (2001) Used to Compute Statistical Power

Statistical power for the F test for assessing slope-based test bias
is:

Power � Pr�� k � 1

N � 2k�Fk	1,N	2k
1	� 	

j�1

k
�y,j

2 �1 � �j
2�x,j�y,j�

�y,j
Hj

� 	
j�1

k	1

�jGj � 0
 ,

where �j is the jth eigenvalue of (C�DC)	1 C�VC;

D � Diag� �x,j�nj � 1�

�nj � 1�2�j�x,j
2 ; j � 1, . . . , k
 ;

V � Diag��y,j
2 �x,j�1 � �j

2�x,j�y,j��nj � 1�

�y,j�nj � 1�2�j�x,j
2 ; j � 1, . . . , k
 ;

and Gj for j � 1, . . . , k – 1 and Hj for j � 1, . . . , k are
independently distributed chi-squared random variables. Specifi-
cally, Hj � �2 (nj 	 2) for j � 1, . . . , k and Gj � �2(1, j) for j �
1, . . . , k 	 1, where j is a noncentrality parameter;

 j �
�uj�C��1�

2

2uj�C�VCuj

and uj is the jth eigenvector of (C�DC)	1 C�VC.

Appendix B

Analytic Proof Describing Why Measurement Error and Differences in Test Scores Across
Groups Produce Bias in the Intercept-Based Difference Test

We begin by analytically examining the effect of G on Y after
controlling for X (cf. Equations 1–3). Assuming no group intercept
differences, we can express the unique contribution of G beyond X,
�� intercept

2 , using the formula for part correlations. Specifically, the
effect size for intercept tests is shown below by squaring the part
correlation between Y and G:

�� intercept
2 �

��YG � �XY�XG�2

�1 � �XG
2 �

(B1)

where �XY is the validity coefficient (i.e., correlation between
test scores and the criterion). If X and Y are measured with
error, �YG, �XY, and �XG will be attenuated, which can be
accounted for in Equation B1 by substituting �yG � �YG��YY,
�xy � �XY��XX�YY, and �xG � �XG��XX for �XG. Furthermore, if
the null hypothesis is true (i.e., ��intercept

2 � 0) and X is measured
without error (i.e., �XX � 1), �yG � �YG��YY � �XY�XG��YY.

Range restriction is another important artifact that has been
shown to reduce the power and effect sizes of tests of slope
differences (Aguinis & Stone-Romero, 1997). We can incorporate
the effect of range restriction on tests of intercept differences by
finding values for the range restricted correlations (i.e., the ranged
restricted values of �yG, �xy, and �xG) in Equation B1. First, note
that if x is standardized, �xG � �p�1 � p��� (which is the
definition of the point biserial correlation), where p is the propor-
tion of the sample containing the first group and �� is the true
difference in group means. In order to find the range restricted
correlation between x and G, �xGr, we must find pr and ��r. In the
unrestricted case where X is error free, � � p�1 � (1 	 p)�0 �
0 (where �1 and �0 are the group means) and, by definition, �� �
�1 	 �0, so that the values of �0 and �1 that satisfy these two
equations are �0 � 	p�� and �1 � (1 	 p)��. If X is measured
with error, the observed group means, �0x and �1x, are defined by
�x0 � � p����XX and �1x � �1 � p�����XX. Similarly,

(Appendices continue)
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we can identify an expression for group variances on Xi using
��2 � �X1

2 � �X0
2 (�X1

2 is the variance for the majority group
and �X0

2 the minority group) and

�X
2 � n	1	

i�1

n

Xi
2 � n	1� 	

i�1

n1

Xi
2 � 	

i�1

n0

Xi
2� � p��X1

2 � ��1�
2� �

�1 � p���X0
2 � ��0�

2� � 1.

Solving values for �X1
2 and �X0

2 using the two equations yields
�X0

2 � 1 � �1 � p���0�
2 � p���1�

2 � ��2� and �X1
2 �

�1 � p���2 � 1 � �p��1�
2 � �1 � p���0�

2�. Substituting the
values for the squared means and setting ��2 � 0 produces
the following expressions for the true group variances:
�X0

2 � �X1
2 � 1 � p�1 � p�����2. Additionally, if X is

measured with error, �XG
2 � p�1 � p�����2 will be attenuated by

�XX, which suggests that �x0
2 � �x1

2 � 1 � �XXp�1 � p�����2.
Now consider a typical selection situation where a sample only

includes subjects with observed scores greater than a given cut
score, x�. This type of range restriction, or truncation, in x alters
the overall distribution of x, as well as each groups’ distribution.
Specifically, the first two moments for x restricted on values
greater than x� are defined by the truncated normal distribution
(Barr & Sherrill, 1999; A. C. Cohen, 1950, 1951; Olsen, 1980) and are
represented as �xr � E�x�x � x�� � � � ���� � ����
and �xr

2 � �2�xi�xi � x�� � �2�1 � �����, where the r subscript
denotes range restricted values and �, (�), and �(�) are defined as,

� �
x� � �

�

��� �
����

1 � ����

���� � ������� � ��,

where �(�) is the standard normal density defined at the cut score,
x�, and �(�) is the cumulative distribution function. Similarly, we
can identify the first two moments for each group. For the first group,
�x1r � E�x1�x1 � x�� � �XX�1 � p��� � �x1��1� and
�x1r

2 � �2�x1�x1 � x�� � �x1
2 �1 � ���1�� where �1 �

�x� � �x1�/�x1. Likewise, the moments for the other group are
�x0r � E�x0�x0 � x�� � �XXp�� � �x0��0� and
�x0r

2 � �2�xi0�xi0 � x�� � �x0
2 �1 � ���0�� where �0 �

�x� � �x0�/�x0. Let ��r � �x1r � �x0r and ��r
2 � �x1r

2 � �x0r
2

denote the observed differences between the groups’ truncated means
and variances, respectively.

Recall that p � E{Gi} denotes the proportion in the first group
in the nonrestricted sample. We must also derive an expression
for the sample proportion in the range restricted sample. Let n
refer to the size of the total sample, nr refer to the size for the
restricted sample, and pr refer to the restricted proportion. Next,
nr is simply the sum of the number of individuals with x � x�.
That is, nr � pn�1 � ���1�� � �1 � p�n�1 � ���0�� and
pr � E�G�x � x�� � pn�1 � ���1��/nr. Additionally, the variance
for the range restricted G is �Gr

2 � �2�Gi�xi � x�� � pr�1 � pr�. We
can use the results above to compute the correlation between x and
G in the restricted sample as

�xGr � �pr�1 � pr���r.

Previous research documents formulas for correcting corre-
lations in the presence of range restriction (Birnbaum, Paulson,
& Andrews, 1950; Hunter, Schmidt, & Le, 2006; K. Pearson,
1903; Sackett & Yang, 2000; Schmidt, Oh, & Le, 2006; Yang,
Sackett, & Nho, 2004). We use Birnbaum et al.’s (1950) results
to compute the range restricted correlations between the pre-
dictors and the observed Y, y. Let �xx and �xxr denote the
unrestricted and restricted variance–covariance matrices among x and
G, respectively, and �xy and �xyr represent vectors with the unre-
stricted and restricted covariances between x and G and yi. Addition-
ally, �yr

2 represents the restricted variance for the observed y. We can
use �xx, �xxr, and �xy to find �xyr and �yr

2 . Specifically, Birnbaum et
al. noted the following expressions hold if linearity is met and the
conditional variances and covariances are independent of predictor
values:

	xyr
� 	xxr	xx

	1	xy

�yr
2 � �y

2 � 	�
xyr� 	xxr

	1
� 	xxr

	1	xx	xxr

	1� 	xyr
.

The vector of measurement-error attenuated, range restricted
correlations between the predictors and yi, ryr, is computed as

ryr � �ryG rxy� � �yr
	1	xyr� diag� 	xxr�
 	1

,

where ryG and rxy are the error-attenuated, range restricted correlations
between y and G and y and x. Consequently, we can estimate the
degree of bias in G by updating Equation B1 as follows:

�� intercept
2 �

�ryG � rxy�pr�1 � pr���r�
2

1 � pr�1 � pr����r�
2

Appendix C

Analytic Description of Challenges in Investigating Differential Prediction
Meta-Analytically

There are several challenges in conducting a meta-analysis of
the differential prediction literature. These challenges may explain
why, although researchers have conducted meta-analyses of the
differential validity literature (e.g., Hunter et al., 1979), we are not

aware of any meta-analysis of the differential prediction literature
published in a peer-reviewed journal.

Before discussing these challenges, consider that a meta-
analysis of the differential prediction literature would rely on
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primary-level studies (denoted by k where k � 1 to K) reporting
the following regression equation:

yik � b0k � b1kxik � b2kGik � b3kxikGik � eik, (C1)

where i (i � 1 to N) indices individuals. For the current argument,
assume that every primary-level differential prediction study pro-
vides estimates of intercept (b2k) and slope (b3k) differences and
that the studies estimate the same functional relationship between
the outcome and test scores and group membership as specified in
Equation C1.

If estimates of b2k and b3k are available for each of the K studies,
then regression equations can be developed to model primary-level
study differences in b2k and b3k. Moreover, it would be necessary
to weight the K b2k and b3k coefficients by the study sample size
using weighted least squares. Raju et al. (1986) and Raju, Pappas,
and Williams (1989) described a procedure for meta-analyzing
first-order regression coefficients, but their procedure does not
include a consideration of meta-analyzing regression coefficients
for the product term b3k in Equation C1.

Equations C2 and C3 below show the calculations that would be
used for aggregating both intercept- and slope-based differences
across studies:

b2k � �02 � �12b3k � 	
v�2

V

�v2�dkv � cv� � uk2 (C2)

b3k � �03 � 	
v�2

V

�v3�dkv � cv� � uk3, (C3)

where the V dkv represent methodological and statistical artifacts
that affect observed differences in b2k and b3k across the K studies.
For example, dkv should include primary-level study estimates of
range restriction, reliability of xi and yi, sample standard deviations
of xi and yi, proportion of minorities in the sample (or p), and so
forth. Additionally, in Equation C3 �03 is an intercept, the V �v3

are coefficients that measure the effect of the V design character-
istics on the observed slope-based effect (i.e., b3k), and uk3 is a
random error term. Similarly, �02 and V �v2 are the regression
coefficients for the model for assessing intercept-based bias (i.e.,
b2k). Lastly, as shown in our simulation results, it is important to
examine the effect of slope differences on intercept differences, so
�12 represents the impact of b3k on b2k. Also, both in Equations C2
and C3, the V cv are constants used to center dkv.

A critical issue to consider is that a meta-analysis investigating
test bias would attempt to estimate the average slope (b3k) and
intercept (b2k) differences across the K studies after controlling for
methodological and statistical artifacts such as measurement error
and range restriction, which are known to bias intercept- and
slope-based differences. If the meta-analytically derived slope-
based bias is not corrected for the detrimental effects of method-

ological and statistical artifacts, the meta-analysis would not be
informative regarding the size of the true population effect. The
issue of incorporating methodological and statistical artifact cor-
rections in the meta-analysis is particularly important in the case of
the estimation of slope-based bias because the presence of artifacts
decreases sample-based effects in relationship to their population
counterparts (Aguinis et al., 2005). Additionally, in contrast to
meta-analytic research using correlations, there are no current
approaches for disattenuating product-term slope coefficients (i.e.,
b3k) for measurement error.

The parameters of interest in Equations C2 and C3 are �02 and
�03, which are the average intercept-based and slope-based esti-
mates of test bias across the K studies. The benefit of using
regression is the ability to control for the V study design charac-
teristics to adjust �02 and �03. That is, �02 and �03 are the
intercepts that represent the average b2k and b3k after accounting
for differences in design characteristics. Consequently, hypothesis
tests can be conducted using �02 and �03 (namely, H0: �02 � 0 and
H0: �03 � 0) to test whether groups differ in intercepts and slopes
across the K studies. However, the estimated values of �02 and �03

are dependent upon values of V cv. Stated differently, if V cv � 0
the intercepts represent the average b2k and b3k when all of the
predictors (i.e., the design characteristics) are zero. However, it is
not meaningful to conduct hypothesis testing for �02 and �03 for
when the V design artifacts are zero because, for example, no study
will use xi with reliabilities equal to zero or range restriction values
equal to zero.

Recall that b2k and b3k are biased in all K primary-level studies
due to the presence of measurement error, selection effects, and
other statistical and methodological artifacts. Researchers are more
interested in the average b2k and b3k in the absence of measurement
error and selection effects. Consequently, the V predictor must be
centered by theoretically important values. For example, let �xxk

and RRk represent the reliability of xi and degree of range restric-
tion in study k. In order to adjust for the presence of measurement
error and selection, �xxk and RRk should be centered by 1, which
represents a situation where there are no measurement error or
selection effects. Similarly, every important study design charac-
teristic could be centered by carefully chosen values that represent
the absence of an artifact. In this case, it would be possible to
estimate the average intercept and slope differences when design
artifacts are not attenuating or inflating the estimates, and it would
be straight forward to test whether �02 and �03 differ from zero.
Moreover, average values for �02 and �03 are the meta-analytically
derived population estimates for the degree of intercept-based and
slope-based test bias. However, note that the estimated �02 and �03

values would be based upon values of the V predictors that do not
exist in the sample (e.g., �xxk and RRk � 1), so estimates would be
produced based on predictor values that do not exist in the sam-
ples.

(Appendices continue)
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Given the description above, we now discuss four major chal-
lenges that researchers face in attempting to review the differential
prediction literature meta-analytically. First, regression coeffi-
cients are referenced to the specific metrics of the scales used in
each study. For example, assume that a researcher is interested in
conducting a meta-analysis of the gender-based differential pre-
diction literature for the relationship between cognitive abilities
tests and job performance. If Study 1 used a test with a possible
range of 1–100 and a supervisory rating of performance as a
criterion with a range of 1–7, b31 � 10 means that a 1-point
increase in test scores is associated with a 10-point difference in
the slope of Y on X across groups. If Study 2 used a test with a
possible range of 1–10 and monthly sales as a criterion with a
range of $0–$300,000, b32 � 10 also means that a 1-point increase
in test scores is associated with a 10-point differences in the slope
of Y on X across groups. However, the meaning of b31 is different
from the meaning of b32. For Study 1, a 10-point difference may
be practically meaningful given a maximum of 100 point on the Y
scale. On the other hand, for Study 2, a 10-point difference may
not be practically meaningful given a maximum of $300,000 on
the Y scale. In short, the first challenge is that cumulating regres-
sion coefficients would result in the well-known problem of “mix-
ing apples and oranges” in meta-analysis (Cortina, 2003). As noted
by Raju et al. (1989),

without the common metrics for the criterion and predictor variables,
it is almost impossible to interpret credibility intervals of the type used
with the correlation model. The use of the new models for studying
VG, therefore, requires that scales for the predictor and criterion
variables be comparable across studies. Such a requirement will
naturally limit the applicability of the covariance and regression slope
models. (p. 903)

Thus, a meta-analysis of the differential prediction literature would
be possible if regression coefficients from primary-level studies
were based on the exact same operationalizations of each of the
predictors, and criterion, in the model.

A second challenge is that even if primary-level studies use the
same measures and all available subgroup-based statistics are
available for a meta-analysis, regression coefficients change across
studies when the regression models do not include exactly the
same predictors due to the “omitted variables” phenomenon (Sack-
ett et al., 2003). That is, each primary-level study could include
additional and also different predictors in the model, so the esti-
mated b2k and b3k represent different population estimates across
studies. For example, Sackett et al. (2003) used Army Project A
data to examine possible race-based differential prediction of per-
sonality measures. When the regression model included three
terms only (i.e., first-order effect of personality, first-order effect

of race, and the personality test by race product term), intercept-
based bias was found for 45 analyses and slope-based bias was
found for seven analyses. In contrast, when the regression equation
included the Armed Services Vocational Aptitude Battery general
factor as an additional predictor, conclusions regarding
personality-based test biased changed for 32 of intercept-based
cases and for three slope-based cases. In short, the second chal-
lenge is that the size and statistical significance of the regression
coefficients in Equation 2 in our article change based on the
inclusion of additional predictors in the model. Thus, a meta-
analysis of the differential prediction literature would be possible
if it cumulates regression coefficients from equations including
exactly the same predictors in each primary-level study.

The third challenge is that, as noted above, the estimated values
of �02 and �03 are dependent upon values of V cv. In other words,
if V cv � 0 the intercepts represent the average b2k and b3k when
all of the predictors are zero. Clearly, it is not meaningful to
conduct hypothesis testing for �02 and �03 for situations when V is
zero. For example, no study will use xi with reliabilities equal to
zero or range restriction values equal to zero (which would mean
that all applicants are selected). Because b2k and b3k are biased in
all primary-level studies due to the presence of measurement error
and selection effects, V must be centered by theoretically important
values. Then, it would be possible to estimate the average
intercept- and slope-based bias when methodological and statisti-
cal artifacts are not attenuating or inflating the estimates and it
would be straight forward to test whether �02 and �03 differ from
zero. Thus, a meta-analysis of the differential prediction literature
would be possible, but results would suggest the degree of
intercept-based and slope-based bias for values for design artifacts
(e.g., measurement error, range restriction) that are not realistic
(e.g., every single applicant is selected).

Finally, a fourth challenge is that a possible way to overcome
the first challenge is to compute subgroup-based regression coef-
ficients using subgroup-based correlation coefficients and standard
deviations or to conduct the meta-analysis using standardized
over- or underprediction of various criteria (e.g., f 2; Aguinis &
Pierce, 2006). However, standard deviations for subgroup-based
predictor and criterion scores are typically reported in only about
20% of published articles (Aguinis et al., 2005, p. 96). Thus, a
meta-analysis of the differential prediction literature would only be
possible if primary-level studies report the necessary subgroup-
based statistics (e.g., means, standard deviations, and sample size).
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